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Be sure to include your name and student number with your assignment.

1. [32 pts] Linear separability

(a) [16 pts] Given a set of data points {ui}, we can define the convex hull to be the set of all points x given by

u =
∑
i

αiui

where αi ≥ 0 and
∑
i αi = 1. Consider a second set of points {vj} together with their corresponding

convex hull. By definition, the two sets of points will be linearly separable if there exists a vector w and
scalar b such that wTui + b > 0 for all ui and wT vj + b < 0 for all vj . Show that if their convex hulls
intersect, the two sets of points cannot be linearly separable, and conversely that if they are not linearly
separable, their convex hulls intersect.

(b) [16 pts] Consider a threshold perceptron that predicts y = 1 when wTx + b ≥ 0 and y = 0 when
wTx + b < 0. It is interesting to study the class of Boolean functions that can be represented by a
threshold perceptron. Assume that the input space is X = {0, 1}2 and the output space is Y = {0, 1}.
For each of the following Boolean functions, indicate whether it is possible to encode the function as a
threshold perceptron. If it is possible, indicate some values for w and b. If it is not possible, indicate a
feature mapping φ : X → X̂ with values for w and b such that wTφ(x) + b is a linear separator that
encodes the function.

• and
• or
• exclusive-or
• iff

2. [18 pts] Prove the following properties of the logistic sigmoid function σ:

• σ(−a) = 1− σ(a)

• σ−1(a) = ln(a/(1− a))

• ∂σ
∂a = σ(a)(1− σ(a))
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3. [50 pts] Linear models for classication. Implement the following two classification algorithms. A dataset will
be posted on the course web page. The input space is continuous (i.e., X = <d), while the output space is
categorical (i.e., Y = {C1, C2}). Learn the parameters of each classifier by likelihood maximization.

(a) [25 pts] Mixture of Gaussians: let π = Pr(y = C1) and 1 − π = Pr(y = C2). Let Pr(x|C1) =
N(x|µ1,Σ) and Pr(x|C2) = N(x|µ2,Σ). Learn the parameters π, µ1, µ2 and Σ by likelihood mazimiza-
tion with the training data. Use Bayes theorem to compute the probability of each class given an input x:
Pr(Cj |x) = kPr(Cj) Pr(x|Cj).

(b) [25 pts] Logistic regression: let Pr(Cj |x) = σ(wTj x + bj). Learn the parameters w and b by likelihood
maximization with the training data. More specifically use Newton’s algorithm derived in class to optimize
the parameters.
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