Assignment 3: Linear Classifcation

CS489/698 — Winter 2010

Out: March 2, 2010
Due: March 16, 2010

Be sure to include your name and student number with your assignment.

1. [32 pts] Linear separability

(a) [16 pts] Given a set of data points {u; }, we can define the convex hull to be the set of all points x given by
u = Z ;UG

where o; > 0 and ), a; = 1. Consider a second set of points {v;} together with their corresponding
convex hull. By definition, the two sets of points will be linearly separable if there exists a vector w and
scalar b such that w”u; + b > 0 for all u; and w”v; + b < 0 for all v;. Show that if their convex hulls
intersect, the two sets of points cannot be linearly separable, and conversely that if they are not linearly
separable, their convex hulls intersect.

(b) [16 pts] Consider a threshold perceptron that predicts y = 1 when w’2z +b > 0 and y = 0 when
wlz + b < 0. It is interesting to study the class of Boolean functions that can be represented by a
threshold perceptron. Assume that the input space is X = {0, 1}? and the output space is Y = {0, 1}.
For each of the following Boolean functions, indicate whether it is possible to encode the function as a
threshold perceptron. If it is possible, indicate some values for w and b. If it is not possible, indicate a
feature mapping ¢ : X — X with values for w and b such that wT ¢(x) + b is a linear separator that
encodes the function.

e and

e or

e exclusive-or
o iff

2. [18 pts] Prove the following properties of the logistic sigmoid function o

o o(—a)=1—-o0(a)
e 0 Ya) =In(a/(1 —a))

. g—g =o(a)(1—0o(a))



3. [50 pts] Linear models for classication. Implement the following two classification algorithms. A dataset will
be posted on the course web page. The input space is continuous (i.e., X = %), while the output space is
categorical (i.e., Y = {C4, C3}). Learn the parameters of each classifier by likelihood maximization.

(a) [25 pts] Mixture of Gaussians: let 7 = Pr(y = C;) and 1 — 7 = Pr(y = C3). Let Pr(z|Cy) =
N(z|p1,X) and Pr(x|Cq) = N(z|uz,X). Learn the parameters 7, y1, ji2 and ¥ by likelihood mazimiza-
tion with the training data. Use Bayes theorem to compute the probability of each class given an input x:
Pr(Cj|z) = kPr(C;) Pr(z|C})).

(b) [25 pts] Logistic regression: let Pr(Cj|z) = a(w;fpx + b;). Learn the parameters w and b by likelihood
maximization with the training data. More specifically use Newton’s algorithm derived in class to optimize
the parameters.



