Assignment 3: Linear Classifcation

CS489/698 - Winter 2010

Out: March 2, 2010
Due: March 16, 2010

Be sure to include your name and student number with your assignment.

1. [32 pts] Linear separability
(a) [16 pts] Given a set of data points $\left\{u_{i}\right\}$, we can define the convex hull to be the set of all points x given by

$$
u=\sum_{i} \alpha_{i} u_{i}
$$

where $\alpha_{i} \geq 0$ and $\sum_{i} \alpha_{i}=1$. Consider a second set of points $\left\{v_{j}\right\}$ together with their corresponding convex hull. By definition, the two sets of points will be linearly separable if there exists a vector w and scalar b such that $w^{T} u_{i}+b>0$ for all u_{i} and $w^{T} v_{j}+b<0$ for all v_{j}. Show that if their convex hulls intersect, the two sets of points cannot be linearly separable, and conversely that if they are not linearly separable, their convex hulls intersect.
(b) [16 pts] Consider a threshold perceptron that predicts $y=1$ when $w^{T} x+b \geq 0$ and $y=0$ when $w^{T} x+b<0$. It is interesting to study the class of Boolean functions that can be represented by a threshold perceptron. Assume that the input space is $X=\{0,1\}^{2}$ and the output space is $Y=\{0,1\}$. For each of the following Boolean functions, indicate whether it is possible to encode the function as a threshold perceptron. If it is possible, indicate some values for w and b. If it is not possible, indicate a feature mapping $\phi: X \rightarrow \hat{X}$ with values for w and b such that $w^{T} \phi(x)+b$ is a linear separator that encodes the function.

- and
- or
- exclusive-or
- iff

2. [$\mathbf{1 8} \mathbf{p t s}]$ Prove the following properties of the logistic sigmoid function σ :

- $\sigma(-a)=1-\sigma(a)$
- $\sigma^{-1}(a)=\ln (a /(1-a))$
- $\frac{\partial \sigma}{\partial a}=\sigma(a)(1-\sigma(a))$

3. [50 pts] Linear models for classication. Implement the following two classification algorithms. A dataset will be posted on the course web page. The input space is continuous (i.e., $X=\Re^{d}$), while the output space is categorical (i.e., $Y=\left\{C_{1}, C_{2}\right\}$). Learn the parameters of each classifier by likelihood maximization.
(a) [25 pts] Mixture of Gaussians: let $\pi=\operatorname{Pr}\left(y=C_{1}\right)$ and $1-\pi=\operatorname{Pr}\left(y=C_{2}\right)$. Let $\operatorname{Pr}\left(x \mid C_{1}\right)=$ $N\left(x \mid \mu_{1}, \Sigma\right)$ and $\operatorname{Pr}\left(x \mid C_{2}\right)=N\left(x \mid \mu_{2}, \Sigma\right)$. Learn the parameters π, μ_{1}, μ_{2} and Σ by likelihood mazimization with the training data. Use Bayes theorem to compute the probability of each class given an input x : $\operatorname{Pr}\left(C_{j} \mid x\right)=k \operatorname{Pr}\left(C_{j}\right) \operatorname{Pr}\left(x \mid C_{j}\right)$.
(b) [25 pts] Logistic regression: let $\operatorname{Pr}\left(C_{j} \mid x\right)=\sigma\left(w_{j}^{T} x+b_{j}\right)$. Learn the parameters w and b by likelihood maximization with the training data. More specifically use Newton's algorithm derived in class to optimize the parameters.
