Assignment 2: Linear Regression

CS489/698 - Winter 2010

Out: February 11, 2010
Due: February 25, 2010

Be sure to include your name and student number with your assignment.

1. [50 pts] In class, we discussed several loss functions for linear regression. However all the loss functions that we discussed assume that the error contributed by each data point have the same importance. Consider a scenario where we would like to give more weight to some data points. Our goal is to fit the data points $\left(x_{i}, y_{i}\right)$ in proportion to their weights r_{i} by minimizing the following objective:

$$
L(w, b)=\sum_{i=1}^{m} r_{i}\left(y_{i}-w x_{i}+b\right)^{2}
$$

where w and b are the model parameters, the training data pairs are $\left(x_{i}, y_{i}\right)$. To simplify things, feel free to consider 1D data (i.e., x_{i} and w are scalars).
(a) [25 pts] Derive a closed-form expression for the estimates of w and b that minimize the objective. Show the steps along the way, not just the final estimates.
(b) [25 pts] Show that this objective is equivalent to the negative log-likelihood for linear regression where each data point may have a different Gaussian measurement noise. What is the variance of measurement i in this model?
2. [50 pts] On the course webpage you will find 2 datasets for experimentation with regularized linear regression. Each dataset comes in 4 files with the training set in trainN.csv, the test set in testN.csv and the corresponding regression values in trainN_val.csv and testn_val.csv. In each file, there is one row per data record and one column per attribute. Your task is to explore the effect of the parameter λ that determines the importance of the regularization term. Vary lambda from 0 to 50 by increments of 1 . For each λ compute the best w that minimizes regularized mean squared error of the training set and then estimate the mean squared error of the test set. For each dataset, plot the mean squared error as a function of λ and discuss your findings: how does lambda affect mean squared error? which λ is best and why?

What to hand in:

(a) printout of your code
(b) printout of the mean squared error for each λ that shows that your code is working well
(c) two graphs (one for each dataset)
(d) discussion of the results

Suggestion: while you are free to use any programming language, it will be easier to program in an environment with good matrix support and a library to solve linear systems. For instance, Matlab provides an excellent environment for matrix computation and to solve linear system $A x=b$, it suffices to type $\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$.

