Lecture 9: Intro to ML and Decision Trees
CS486/686 Intro to Artificial Intelligence

Pascal Poupart
David R. Cheriton School of Computer Science

% WATERLOO

Outline

= Inductive learning

= Decision trees

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 2 @ WATE RLOO

What is Machine Learning?

» Definition:

= A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E. [Tom Mitchell, 1997]

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 3 @ WATE R LOO

Examples

= Computer Go (reinforcement learning):

= T: playing the game of Go

= P: percent of games won against an opponent

= E: playing practice games against itself
= Handwriting recognition (supervised learning):

= T: recognize handwritten words within images

= P: percent of words correctly recognized

= E: database of handwritten words with given classifications
= Customer profiling (unsupervised learning):

= T: cluster customers based on transaction patterns

= P: homogeneity of clusters
= E: database of customer transactions

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 4 @ WATE RLOO

Representation

= Representation of the learned information is important
= Determines how the learning algorithm will work

= Common representations:
= Neural networks
= Weighted combination of basis functions
= Graphical models (e.g., Bayesian networks)
= Propositional logic (e.g., decision trees)

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 5 @ WATE R LOO

Inductive learning (also known as concept learning)

= Induction:
= Given a training set of examples of the form (x,f(x))
= X is the input, f(x) is the output
= Return a function h that approximates f

= h is called the hypothesis

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 6 @ WATE R LOO

Classification

= Training set: Sky | Humidity | Wind Water | Forecast | EnjoySport
Sunny | Normal Strong Warm Same Yes
Sunny High Strong Warm Same Yes
Sunny High Strong Warm Change No
Sunny High Strong Cool Change Yes

%/—/ f

= Possible hypotheses:

f(x)

= h,: S=sunny - ES=yes
= h,: Wa=cool or F=same - enjoySport

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart 7 @ WATE R LOO

Regression

= Find function h that fits f at instances x

fix)
'

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 8 @ WATE R LOO

Regression

= Find function h that fits f at instances x

fix) — h; — hy
A

X

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 9 @ WATE RLOO

Hypothesis Space

= Hypothesis space H
= Set of all hypotheses h that the learner may consider

= Learning is a search through hypothesis space

= Objective:
= Find hypothesis that agrees with training examples

= But what about unseen examples?

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 10 @ WATE RLOO

Generalization

= A good hypothesis will generalize well (i.e., predict unseen
examples correctly)

= Usually...

= Any hypothesis h found to approximate the target function f well over
a sufficiently large set of training examples will also approximate the
target function well over any unobserved examples

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 11 @ WATE RLOO

Inductive learning

= Construct/adjust h to agree with f on training set
= (his consistent if it agrees with f on all examples)

= E.g., curve fitting:
fix)
A

=

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 12 @ WATE RLOO

Inductive learning

= Construct/adjust h to agree with f on training set
= (his consistent if it agrees with f on all examples)
= E.g., curve fitting:

fix)
A
/
/
L}/‘ ~ X
=

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 13 @ WATE RLOO

Inductive learning

= Construct/adjust h to agree with f on training set
= (his consistent if it agrees with f on all examples)

= E.g., curve fitting:
fix)
A

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 14 @ WATE R LOO

Inductive learning

= Construct/adjust h to agree with f on training set
= (his consistent if it agrees with f on all examples)
= E.g., curve fitting:

fix)
A
aly
L_y,aé = \/

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 15 @ WATE RLOO

Inductive learning

= Construct/adjust h to agree with f on training set
= (his consistent if it agrees with f on all examples)

= E.g., curve fitting:
/”F

24 ‘
el ~ Vi

= Ockham’s razor: prefer the simplest hypothesis consistent with data

fix)
A

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 16 @ WATE RLOO

Inductive learning

= Finding a consistent hypothesis depends on the hypothesis space

= For example, it is not possible to learn exactly f(x)=ax+b+xsin(x) when
H=space of polynomials of finite degree

= A learning problem is realizable if the hypothesis space contains the
true function, otherwise it is unrealizable

= Difficult to determine whether a learning problem is realizable since the true
function is not known

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 17 @ WATE RLOO

Inductive learning

= It is possible to use a very large hypothesis space

= For example, H=class of all Turing machines

= But there is a tradeoff between expressiveness of a hypothesis
class and complexity of finding simple, consistent hypothesis
within the space

= Fitting straight lines is easy, fitting high degree polynomials is hard,
fitting Turing machines is very hard!

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 18 @ WATE RLOO

Decision trees

= Decision tree classification

= Nodes: labeled with attributes
= Edges: labeled with attribute values
= Leaves: labeled with classes

= Classify an instance by starting at the root, testing the
attribute specified by the root, then moving down the

branch corresponding to the value of the attribute
= Continue until you reach a leaf
= Return the class

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 19 @ WATE RLOO

Decision tree (playing tennis)

Outlook
ny Overcast <
Humidity Wind
W M?al Yes /8#49 eak
No Yes No Yes

An instance
<Outlook=Sunny, Temp=Hot, Humidity=High, Wind=Strong>
Classification: No

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 20 @ WATERLOO

Decision tree representation

= Decision trees can represent disjunctions of conjunctions of
constraints on attribute values

Outlook

nny Overcast

Humidity Wind
/g/ \N\ak Yes %g\%
Yes Yes

(Outlook=Sunny A Humidity=Normal) v (Outlook=Overcast)
v (Outlook=Rain A Wind=Weak)

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 21 @ WATE RLOO

Decision tree representation

= Decision trees are fully expressive within the class of
propositional languages

= Any Boolean function can be written as a decision tree

= Trivially by allowing each row in a truth table correspond to a path in the tree

» Can often use small trees

= Some functions require exponentially large trees (majority function, parity
function)

= However, there is no representation that is efficient for all functions

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 22 @ WATE RLOO

Inducing a decision tree

= Aim: find a small tree consistent with the training examples

= Idea: (recursively) choose "most significant" attribute as root of
(sub)tree

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 23 @ WATE RLOO

Decision Tree Learning

function DTL(ezamples, attributes, default) returns a decision tree

if ezamples is empty then return default
else if all ezamples have the same classification then return the classification
else if attributes is empty then return MODE(ezamples)
else
best «— CHOOSE-ATTRIBUTE(attributes, examples)
tree < a new decision tree with root test best
for each value v; of best do
examples; + {elements of examples with best = v;}
subtree «— DT L(examples;, attributes — best, MODE(ezamples))
add a branch to tree with label v; and subtree subtree
return [lree

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 24 @ WATE R LOO

Choosing attribute tests

= The central choice is deciding which attribute to test at each node

= We want to choose an attribute that is most useful for classifying
examples

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 25 @ WATE RLOO

Example -- Restaurant

Example Attributes Target

Alt | Bar | Fri| Hun| Pat | Price | Rain | Res | Type | Est | Wait
X, T| F F T |Some| $$$ F T | French| 0-10 T
Xo T F F T Full $ F F | Thai [30-60 F
X3 F| T | F F |Some| $ F F | Burger| 0-10 T
Xy T| F T T Full $ F F | Thai [10-30 T
X5 T| F T F Full | $$% F T |French| >60 F
X F| T | F T |Some| $$ T T | ltalian | 0-10 T
X7 F| T |F F | None| $ T F | Burger| 0-10 F
Xs F | F F T |Some| $$ T T | Thai | 0-10 T
Xo | F| T|T| F |F| $ | T |F |Buge|>60] F
X0 T | T T T Full | $$$ F T | Italian | 10-30 F
X1 F F F F | None $ F F | Thai | 0-10 F
X9 T | T T T Full $ F F | Burger | 30-60 T

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 26 @ WATERLOO

Choosing an attribute

= Idea: a good attribute splits the examples into subsets that are

(ideally) "all positive" or "all negative"

Patrons?

Nomull Fre ncm

= Patrons? is a better choice

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 27

Type?

Italian Thai

Burger

% WATERLOO

Using information theory

= To implement Choose-Attribute in the DTL algorith /N

_ -
—

A

= Measure uncertainty (Entropy):

[(P(vy), ..., P(v)) = Xi —P(w) log, P(v)) 2 IR

= For a training set containing p positive examples and n negative o.
examples:

p n n

n
1)=——L—log, - log,

p+n p+n p+n p+n p+n p+n

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 28 @ WATERLOO

Information gain

= A chosen attribute A divides the training set E into subsets E,, ... , E , according to
their values for A, where A has vdistinct values.

— pD.+n. . .
remainder(A) = z Pl (P : ")
- ptn p;+tn p+n

= Information Gain (IG) or reduction in uncertainty from the attribute test:

IG(A)=1(P : &) —remainder(A)
p+n p+n

= Choose the attribute with the largest IG

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 29 @ WATE R LOO

Information gain
For the training set, 7= »= 6, I(6/12, 6/12) = 1 bit

Consider the attributes Patrons and Type (and others too):

1G(Patrons) =1- [13[(0,1) + iI(l,O) + i[(g , i)] = .541 bits

2

16(Type) =1-[= 1=, 5+ 21 Ly, il(% %) %(i)1=0bit

12 272" 12 272 12

Patrons has the highest I1G of all attributes and so is chosen by the DTL
algorithm as the root

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 30 @ WATE RLOO

Example

= Decision tree learned from the 12 examples:

| Patrons? |

None me Full

= Substantially simpler than “true” tree---a more complex
hypothesis isn’t justified by small amount of data

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 31 @ WATE RLOO

Performance of a learning algorithm

= A learning algorithm is good if it produces a hypothesis that
does a good job of predicting classifications of unseen examples

= Verify performance with a test set
1. Collect a large set of examples
2. Divide into 2 disjoint sets: training set and test set
3. Learn hypothesis h with training set
4. Measure percentage of correctly classified examples by h in the test set

UNIVERSITY OF
A WATERLOO

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 32 @

Learning curves

Training set
A
Overtitting!

g Test set
o
o
X

>

Tree size

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 33 @ WATERLOO

-
Overfitting

= Decision-tree grows until all training examples are perfectly classified

= But what if...

= Data is noisy
= Training set is too small to give a representative sample of the target function

= May lead to Overfitting!

= Definition: Given a hypothesis space H, a hypothesis h € H is said to overfit the
training data if there exists some alternative hypothesis h’ € H such that h has
smaller error than h’ over the training examples but h’ has smaller error than h over

the entire distribution of instances

= Overfitting can decrease accuracy of decision trees by 10-25%

UNIVERSITY OF
A WATERLOO

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 34 @

Avoiding overfitting

Two popular techniques:

1. Prune statistically irrelevant nodes
« Measure irrelevance with y2 test

2. Ideally: stop growing tree when test set performance decreases
e Use cross-validation

Training set
T A
o
S /
(&)
X
Best tree
>
Tree size

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 35 @ WATE RLOO

Choosing Tree Size

= Problem: since we are choosing Tree Size based on the test set, the
test set effectively becomes part of the training set when optimizing
Tree Size. Hence, we cannot trust anymore the test set accuracy to be
representative of future accuracy.

= Solution: split data into training, validation and test sets
» Training set: compute decision tree
= Validation set: optimize hyperparameters such as Tree Size
= Test set: measure performance

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 36 @ WATE RLOO

Choosing Tree Size based on Validation Set

Let TS be the Tree Size
For TS = 1 to max value
decisionTreers « train(TS, trainingData)
accuracyrs < eval(decisionTreers, validationData)
TS* « argmaxrs accuracyrs

decisionTreers- < train(TS™, trainingData U validationData)
accuracy < eval(decisionTreerg+, testData)
Return k*, accuracy

eval(decisionTree, dataset)
correct «
For each (x,y) € dataset

if y = decisionTree(x) then correct « correct + 1

correct

accuracy <« —————
y |dataset]|

return accuracy

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 37 @ WATE R LOO

Robust validation

= How can we ensure that validation accuracy
is representative of future accuracy?

= Validation accuracy becomes more reliable
as we increase the size of the validation set

= However, this reduces the amount of data left for training

= Popular solution: cross-validation

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 38 @ WATE RLOO

Cross-Validation

= Repeatedly split training data in two parts, one for training and one for validation.
Report the average validation accuracy.

= k-fold cross validation: split training data in k equal size subsets. Run k
experiments, each time validating on one subset and training on the remaining
subsets. Compute the average validation accuracy of the k experiments.

= Picture:

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 39 @ WATE R LOO

Selecting Tree Size by Cross-Validation

Let TS be the Tree Size
Let k be the number of trainData splits
For TS = 1to max value

Fori =1to k do (whereiindexes trainData splits)
decisionTreers < train(TS, trainDatay ;1 ;+1.x)

accuracyrs; < eval(decisionTreers, trainData;)
ACCUTACYTg < average({accuracyTS’i}vl_)

TS* « argmaxrg accuracyrg
decisionTreers+ < train(TS™, trainData)
accuracy < eval(decisionTreers+, testData)
Return TS*, accuracy

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 40 @ WATE R LOO

