
Lecture 9: Intro to ML and Decision Trees
CS486/686 Intro to Artificial Intelligence

Pascal Poupart
David R. Cheriton School of Computer Science

2026-2-3

Outline
§ Inductive learning

§ Decision trees

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 2

What is Machine Learning?

§ Definition:
§ A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E. [Tom Mitchell, 1997]

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 3

§ Computer Go (reinforcement learning):
§ T: playing the game of Go
§ P: percent of games won against an opponent
§ E: playing practice games against itself

§ Handwriting recognition (supervised learning):
§ T: recognize handwritten words within images
§ P: percent of words correctly recognized
§ E: database of handwritten words with given classifications

§ Customer profiling (unsupervised learning):
§ T: cluster customers based on transaction patterns
§ P: homogeneity of clusters
§ E: database of customer transactions

Examples

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 4

Representation

§ Representation of the learned information is important
§ Determines how the learning algorithm will work

§ Common representations:
§ Neural networks
§ Weighted combination of basis functions
§ Graphical models (e.g., Bayesian networks)
§ Propositional logic (e.g., decision trees)
§ …

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 5

Inductive learning (also known as concept learning)

§ Induction:
§ Given a training set of examples of the form (x,f(x))

§ x is the input, f(x) is the output

§ Return a function h that approximates f
§ h is called the hypothesis

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 6

§ Training set:

§ Possible hypotheses:
§ h1: S=sunny à ES=yes
§ h2: Wa=cool or F=same à enjoySport

Sky Humidity Wind Water Forecast EnjoySport

Sunny Normal Strong Warm Same Yes
Sunny High Strong Warm Same Yes
Sunny High Strong Warm Change No
Sunny High Strong Cool Change Yes

x f(x)

Classification

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart 7

Regression
§ Find function h that fits f at instances x

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 8

Regression
§ Find function h that fits f at instances x

h1 h2

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 9

§ Hypothesis space H
§ Set of all hypotheses h that the learner may consider

§ Learning is a search through hypothesis space

§ Objective:
§ Find hypothesis that agrees with training examples

§ But what about unseen examples?

Hypothesis Space

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 10

§ A good hypothesis will generalize well (i.e., predict unseen
examples correctly)

§ Usually…
§ Any hypothesis h found to approximate the target function f well over

a sufficiently large set of training examples will also approximate the
target function well over any unobserved examples

Generalization

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 11

Inductive learning
§ Construct/adjust h to agree with f on training set
§ (h is consistent if it agrees with f on all examples)
§ E.g., curve fitting:

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 12

Inductive learning
§ Construct/adjust h to agree with f on training set
§ (h is consistent if it agrees with f on all examples)
§ E.g., curve fitting:

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 13

Inductive learning
§ Construct/adjust h to agree with f on training set
§ (h is consistent if it agrees with f on all examples)
§ E.g., curve fitting:

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 14

Inductive learning

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 15

§ Construct/adjust h to agree with f on training set
§ (h is consistent if it agrees with f on all examples)
§ E.g., curve fitting:

§ Construct/adjust h to agree with f on training set
§ (h is consistent if it agrees with f on all examples)
§ E.g., curve fitting:

§ Ockham’s razor: prefer the simplest hypothesis consistent with data

Inductive learning

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 16

Inductive learning
§ Finding a consistent hypothesis depends on the hypothesis space

§ For example, it is not possible to learn exactly f(x)=ax+b+xsin(x) when
H=space of polynomials of finite degree

§ A learning problem is realizable if the hypothesis space contains the
true function, otherwise it is unrealizable
§ Difficult to determine whether a learning problem is realizable since the true

function is not known

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 17

Inductive learning

§ It is possible to use a very large hypothesis space
§ For example, H=class of all Turing machines

§ But there is a tradeoff between expressiveness of a hypothesis
class and complexity of finding simple, consistent hypothesis
within the space
§ Fitting straight lines is easy, fitting high degree polynomials is hard,

fitting Turing machines is very hard!

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 18

Decision trees
§ Decision tree classification

§ Nodes: labeled with attributes
§ Edges: labeled with attribute values
§ Leaves: labeled with classes

§ Classify an instance by starting at the root, testing the
attribute specified by the root, then moving down the
branch corresponding to the value of the attribute
§ Continue until you reach a leaf
§ Return the class

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 19

Outlook

Humidity Wind
Yes

Overcast
Sunny Rain

No YesYesNo

High Normal Strong Weak

Classification: No

<Outlook=Sunny, Temp=Hot, Humidity=High, Wind=Strong>
An instance

Decision tree (playing tennis)

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 20

§ Decision trees can represent disjunctions of conjunctions of
constraints on attribute values

Outlook

Humidity Wind
Yes

OvercastSunny Rain

No YesYesNo

High Normal Strong Weak

(Outlook=Sunny Ù Humidity=Normal) Ú (Outlook=Overcast)
Ú (Outlook=Rain Ù Wind=Weak)

Decision tree representation

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 21

§ Decision trees are fully expressive within the class of
propositional languages
§ Any Boolean function can be written as a decision tree

§ Trivially by allowing each row in a truth table correspond to a path in the tree

§ Can often use small trees

§ Some functions require exponentially large trees (majority function, parity
function)

§ However, there is no representation that is efficient for all functions

Decision tree representation

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 22

§ Aim: find a small tree consistent with the training examples

§ Idea: (recursively) choose "most significant" attribute as root of
(sub)tree

Inducing a decision tree

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 23

Decision Tree Learning

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 24

Choosing attribute tests

§ The central choice is deciding which attribute to test at each node

§ We want to choose an attribute that is most useful for classifying
examples

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 25

Example -- Restaurant

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 26

Choosing an attribute
§ Idea: a good attribute splits the examples into subsets that are

(ideally) "all positive" or "all negative"

§ Patrons? is a better choice

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 27

Using information theory
§ To implement Choose-Attribute in the DTL algorithm

§ Measure uncertainty (Entropy):

! " #! , … , " #" = ∑#$!" −" ## log% " ##

§ For a training set containing p positive examples and n negative
examples:

!"
!

!"
!

!"
"

!"
"

!"
!

!"
"#

++
!

++
!=

++ !! "#$"#$%&'

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 28

Information gain
§ A chosen attribute A divides the training set E into subsets E1, … , Ev according to

their values for A, where A has v distinct values.

§ Information Gain (IG) or reduction in uncertainty from the attribute test:

§ Choose the attribute with the largest IG

!
= +++

+
=

!

" ""

"

""

"""

#A
#

#A
A%

#A
#A&'()*"#+('

!
"#$"$

!"!#"!" !"#A%&'(#"
')
'

')
)G!G+ !

++
=

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 29

Information gain
For the training set, p = n = 6, I(6/12, 6/12) = 1 bit

Consider the attributes Patrons and Type (and others too):

Patrons has the highest IG of all attributes and so is chosen by the DTL
algorithm as the root

!"#$%&'(
)
*+

)
*,

-*
)'

)
*+

)
*,

-*
)'

*
-+

*
-,

-*
*'

*
-+

*
-,

-*
*.-',

!"#$%&/)-0'(
1
)+

1
*,

-*
1'&+-,

-*
)'-+&,

-*
*.-',

=+++!=

=++!=

!!!!"#$%!&

!!!'()G+I-!& .541

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 30

Example
§ Decision tree learned from the 12 examples:

§ Substantially simpler than “true” tree---a more complex
hypothesis isn’t justified by small amount of data

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 31

§ A learning algorithm is good if it produces a hypothesis that
does a good job of predicting classifications of unseen examples

§ Verify performance with a test set
1. Collect a large set of examples
2. Divide into 2 disjoint sets: training set and test set
3. Learn hypothesis h with training set
4. Measure percentage of correctly classified examples by h in the test set

Performance of a learning algorithm

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 32

Learning curves

Overfitting!
%

 c
or

re
ct

Tree size

Training set

Test set

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 33

§ Decision-tree grows until all training examples are perfectly classified

§ But what if…
§ Data is noisy
§ Training set is too small to give a representative sample of the target function

§ May lead to Overfitting!
§ Definition: Given a hypothesis space H, a hypothesis h Î H is said to overfit the

training data if there exists some alternative hypothesis h’ Î H such that h has
smaller error than h’ over the training examples but h’ has smaller error than h over
the entire distribution of instances

§ Overfitting can decrease accuracy of decision trees by 10-25%

Overfitting

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 34

Two popular techniques:
1. Prune statistically irrelevant nodes

• Measure irrelevance with c2 test
2. Ideally: stop growing tree when test set performance decreases

• Use cross-validation
%

 c
or

re
ct

Tree size

Training set

Test set

Best tree

Avoiding overfitting

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 35

Choosing Tree Size

§ Problem: since we are choosing Tree Size based on the test set, the
test set effectively becomes part of the training set when optimizing
Tree Size. Hence, we cannot trust anymore the test set accuracy to be
representative of future accuracy.

§ Solution: split data into training, validation and test sets
§ Training set: compute decision tree
§ Validation set: optimize hyperparameters such as Tree Size
§ Test set: measure performance

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 36

Choosing Tree Size based on Validation Set
Let !" be the Tree Size
For !" = 1 to max value
 $%&'(')*!+%%!" ← -+.'*(!", -+.'*'*12.-.)
 a&&5+.&6!" ← %7.8($%&'(')*!+%%!", 7.8'$.-')*2.-.)!"∗ ← .+19.:!"	.&&5+.&6!"
$%&'(')*!+%%!"∗ ← -+.'*(!"∗, -+.'*'*12.-. ∪ 7.8'$.-')*2.-.)
.&&5+.&6 ← %7.8($%&'(')*!+%%!"∗ , -%(-2.-.)
Return =∗, .&&5+.&6

%7.8($%&'(')*!+%%, $.-.(%-)
 &)++%&- ← 0
 For each (:, 6) ∈ $.-.(%-
 if 6 = $%&'(')*!+%%(:) then &)++%&- ← &)++%&- + 1
 .&&5+.&6 ← $%&&'$(

)*(*+'(
 return .&&5+.&6

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 37

Robust validation

§ How can we ensure that validation accuracy
is representative of future accuracy?
§ Validation accuracy becomes more reliable

as we increase the size of the validation set

§ However, this reduces the amount of data left for training

§ Popular solution: cross-validation

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 38

Cross-Validation
§ Repeatedly split training data in two parts, one for training and one for validation.

Report the average validation accuracy.

§ "-fold cross validation: split training data in # equal size subsets. Run #
experiments, each time validating on one subset and training on the remaining
subsets. Compute the average validation accuracy of the # experiments.

§ Picture:

CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 39

Selecting Tree Size by Cross-Validation
Let !" be the Tree Size
Let # be the number of $%&'()&$& splits
For !" = 1 to max value

For ' = 1 to # do (where $ indexes %&'$()'%' splits)
 *+,$-$.(/&++!" ← %&'$((/2, !"#$%&#!#"..$%",$'"..()
 &++,%&+-BC,D ← /0&1(3/+'4'5(!%//BC, $%&'()&$&D)	
 &++,%&+-BC ← &0/%&9/(&++,%&+-BC,D ∀D)
!"∗ ← &%9:&;BC	&++,%&+-BC
3/+'4'5(!%//BC∗ ← $%&'((!"∗, $%&'()&$&)
&++,%&+- ← /0&1(3/+'4'5(!%//BC∗ , $/4$)&$&)
Return !"∗, &++,%&+-
CS486/686 Winter 2026 - Lecture 9 - Pascal Poupart PAGE 40

