
Lecture 7: Bayesian Networks (Continued)
CS486/686 Intro to Artificial Intelligence

Pascal Poupart
David R. Cheriton School of Computer Science

2026-1-27

§ Variable Elimination with Evidence
§ Elimination orders
§ Reducing computation to relevant factors

Outline

CS486/686 Winter 2026 - Lecture 7 - Pascal Poupart PAGE 2

§ Computing posterior of query variable given evidence is similar;
suppose we observe C=c:

 P(A|c) = α P(A) P(c|A)
 = α P(A) ΣB P(c|B) P(B|A)
 = α f1(A) ΣB f3(B,c) f2(A,B)
 = α f1(A) ΣB f4(B) f2(A,B)
 = α f1(A) f5(A)
 = α f6(A)
New factors: f4(B)= f3(B,c); f5(A)= ΣB f2(A,B) f4(B); f6(A)= f1(A) f5(A)

B CA
f1(A) f2(A,B) f3(B,C)

Variable Elimination: Evidence

CS486/686 Winter 2026 - Lecture 7 - Pascal Poupart PAGE 3

Given query var Q, evidence vars E (observed to be e), remaining vars Z. Let F be
the set of factors involving CPTs for {Q} ∪ Z.

1. Replace each factor f∊F that mentions a variable(s) in E
 with its restriction fE=e (somewhat abusing notation)
2. Choose an elimination ordering Z1, …, Zn of variables in Z.
3. For each Zj -- in the order given -- eliminate Zj ∊ Z as follows:
 (a) Compute new factor gj = ΣZj f1 x f2 x … x fk,
 where the fi are the factors in F that include Zj
 (b) Remove the factors fi (that mention Zj) from F and add new factor gj to F
4. The remaining factors refer only to the query variable Q.
 Take their product and normalize to produce P(Q)

Variable Elimination with Evidence

CS486/686 Winter 2026 - Lecture 7 - Pascal Poupart PAGE 4

Restriction: replace f4(C,D) with f5(C) = f4(C,d)
Step 1: Add f6(A,B)= ΣC f5(C) f3(A,B,C)
 Remove: f3(A,B,C), f5(C)
Step 2: Add f7(A) = ΣB f6(A,B) f2(B)
 Remove: f6(A,B), f2(B)
Last factors: f7(A), f1(A). The product f1(A) x f7(A) is (possibly

unnormalized) posterior. So… P(A|d) = α f1(A) x f7(A).

Factors: f1(A) f2(B)
f3(A,B,C) f4(C,D)

Query: P(A)?
Evidence: D = d
Elim. Order: C, B

C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)

VE: Example 2 again with Evidence

CS486/686 Winter 2026 - Lecture 7 - Pascal Poupart PAGE 5

§ After iteration j (elimination of Zj), factors remaining in set F refer only to
variables Xj+1, … Zn and Q. No factor mentions an evidence variable E after
the initial restriction.

§ Number of iterations: linear in number of variables

§ Complexity is exponential in the number of variables.

§ Recall each factor has exponential size in its number of variables

§ Can't do any better than size of BN (since its original factors are part of
the factor set)

§ When we create new factors, we might make a set of variables larger.

Some Notes on the VE Algorithm

CS486/686 Winter 2026 - Lecture 7 - Pascal Poupart PAGE 6

§ The size of the resulting factors is determined by elimination
ordering! (We’ll see this in detail)

§ For polytrees, easy to find good ordering (e.g., work outside in).

§ For general BNs, sometimes good orderings exist, sometimes they
don't (then inference is exponential in number of vars).
§ Simply finding the optimal elimination ordering for general BNs is NP-hard.

§ Inference in general is NP-hard in general BNs

Some Notes on the VE Algorithm

CS486/686 Winter 2026 - Lecture 7 - Pascal Poupart PAGE 7

§ Inference is linear in size of network
§ ordering: eliminate only “singly-connected”

nodes

§ e.g., in this network, eliminate D, A, C, X1,…;
or eliminate X1,… Xk, D, A, C; or mix up…

§ result: no factor ever larger than original
CPTs

§ eliminating B before these gives factors that
include all of A,C, X1,… Xk !!!

Elimination Ordering: Polytrees

CS486/686 Winter 2026 - Lecture 7 - Pascal Poupart PAGE 8

§ Suppose query variable is D.
Consider different orderings for
this network
§ A,F,H,G,B,C,E:

§ good: why?

§ E,C,A,B,G,H,F:
§ bad: why?

§ Which ordering creates smallest
factors?
§ either max size or total

§ which creates largest factors?

Effect of Different Orderings

CS486/686 Winter 2026 - Lecture 7 - Pascal Poupart PAGE 9

§ Certain variables have no impact on the query.
§ In ABC network, computing Pr(A) with no evidence requires

elimination of B and C.
§ But when you sum out these vars, you compute a trivial factor (whose value are all

ones); for example:

§ eliminating C: f4(B) = ΣC f3(B,C) = ΣC Pr(C|B)

§ 1 for any value of B (e.g., Pr(c|b) + Pr(~c|b) = 1)

§ No need to think about B or C for this query

B CA

Relevance

CS486/686 Winter 2026 - Lecture 7 - Pascal Poupart PAGE 10

§ Can restrict attention to relevant variables. Given query Q, evidence E:
§ Q is relevant

§ if any node Z is relevant, its parents are relevant

§ if E∊E is a descendent of a relevant node, then E is relevant

§ We can restrict our attention to the subnetwork comprising only relevant
variables when evaluating a query Q

Relevance: A Sound Approximation

CS486/686 Winter 2026 - Lecture 7 - Pascal Poupart PAGE 11

§ Query: 𝑃(𝐹)
§ Relevant: 𝐹, 𝐶, 𝐵, 𝐴

§ Query: 𝑃(𝐹|𝐸)
§ Relevant: 𝐹, 𝐶, 𝐵, 𝐴
§ Also: 𝐸, hence 𝐷, 𝐺
§ Intuitively, we need to compute
𝑃 𝐶 𝐸 = 𝛼𝑃 𝐶 𝑃 𝐸 𝐶 to accurately
compute 𝑃(𝐹|𝐸)

§ Query: 𝑃(𝐹|𝐸, 𝐶)
§ Algorithm says all variables relevant; but really none except 𝐶, 𝐹

since 𝐶 cuts off all influence of others)
§ Algorithm is overestimating relevant set

A

E

G

FD

C

B

Relevance: Examples

CS486/686 Winter 2026 - Lecture 7 - Pascal Poupart PAGE 12

