

Lecture 7: Bayesian Networks (Continued)

CS486/686 Intro to Artificial Intelligence

2026-1-27

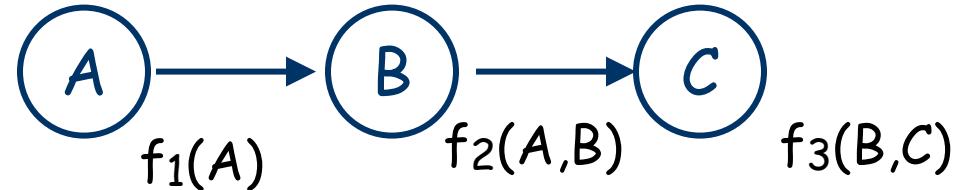
Pascal Poupart
David R. Cheriton School of Computer Science

Outline

- Variable Elimination with Evidence
- Elimination orders
- Reducing computation to relevant factors

Variable Elimination: Evidence

- Computing posterior of query variable given evidence is similar; suppose we observe $C=c$:



$$\begin{aligned} P(A|c) &= \alpha P(A) P(c|A) \\ &= \alpha P(A) \sum_B P(c|B) P(B|A) \\ &= \alpha f_1(A) \sum_B f_3(B,c) f_2(A,B) \\ &= \alpha f_1(A) \sum_B f_4(B) f_2(A,B) \\ &= \alpha f_1(A) f_5(A) \\ &= \alpha f_6(A) \end{aligned}$$

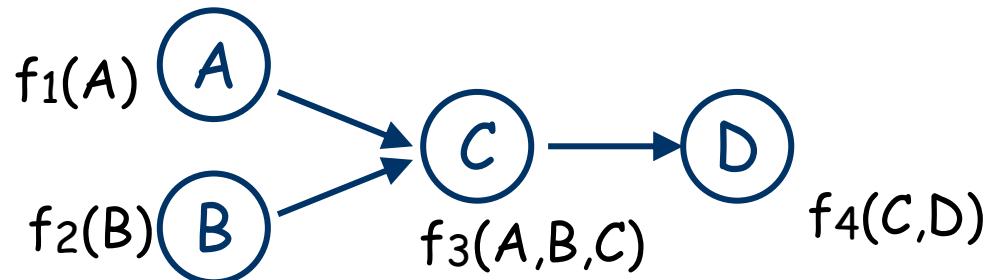
New factors: $f_4(B) = f_3(B,c)$; $f_5(A) = \sum_B f_2(A,B) f_4(B)$; $f_6(A) = f_1(A) f_5(A)$

Variable Elimination with Evidence

Given query var Q , evidence vars \mathbf{E} (observed to be \mathbf{e}), remaining vars \mathbf{Z} . Let F be the set of factors involving CPTs for $\{Q\} \cup \mathbf{Z}$.

1. Replace each factor $f \in F$ that mentions a variable(s) in \mathbf{E} with its restriction $f_{\mathbf{E}=\mathbf{e}}$ (somewhat abusing notation)
2. Choose an elimination ordering Z_1, \dots, Z_n of variables in \mathbf{Z} .
3. For each Z_j -- in the order given -- eliminate $Z_j \in \mathbf{Z}$ as follows:
 - (a) Compute new factor $g_j = \sum_{Z_j} f_1 \times f_2 \times \dots \times f_k$,
where the f_i are the factors in F that include Z_j
 - (b) Remove the factors f_i (that mention Z_j) from F and add new factor g_j to F
4. The remaining factors refer only to the query variable Q .
Take their product and normalize to produce $P(Q)$

VE: Example 2 again with Evidence



Restriction: replace $f_4(C,D)$ with $f_5(C) = f_4(C,d)$

Step 1: Add $f_6(A,B) = \sum_C f_5(C) f_3(A,B,C)$

Remove: $f_3(A,B,C)$, $f_5(C)$

Step 2: Add $f_7(A) = \sum_B f_6(A,B) f_2(B)$

Remove: $f_6(A,B)$, $f_2(B)$

Last factors: $f_7(A)$, $f_1(A)$. The product $f_1(A) \times f_7(A)$ is (possibly unnormalized) posterior. So... $P(A|d) = \alpha f_1(A) \times f_7(A)$.

Factors: $f_1(A)$ $f_2(B)$
 $f_3(A,B,C)$ $f_4(C,D)$
Query: $P(A)?$
Evidence: $D = d$
Elim. Order: C, B

Some Notes on the VE Algorithm

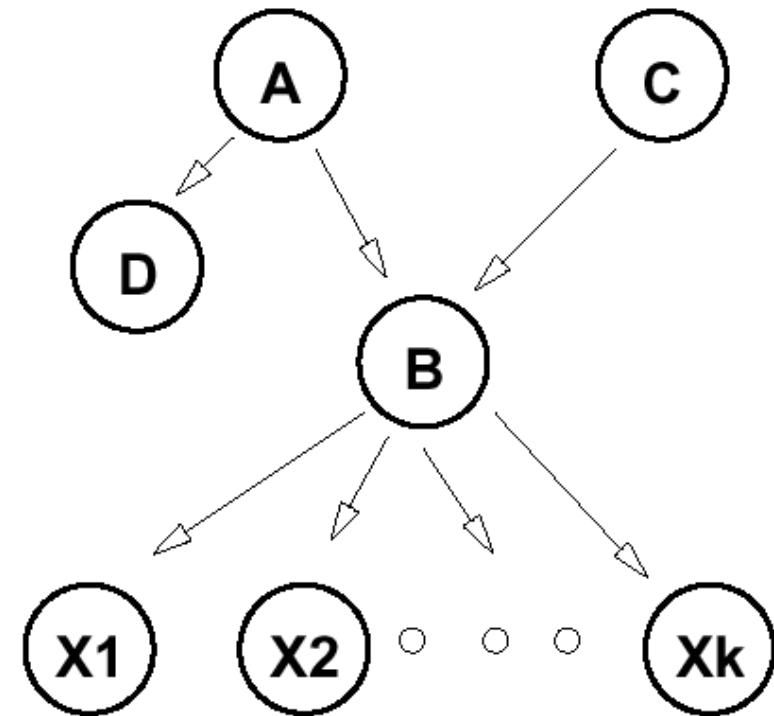
- After iteration j (elimination of Z_j), factors remaining in set F refer only to variables X_{j+1}, \dots, Z_n and Q . No factor mentions an evidence variable E after the initial restriction.
- Number of iterations: linear in number of variables
- Complexity is exponential in the number of variables.
 - Recall each factor has exponential size in its number of variables
 - Can't do any better than size of BN (since its original factors are part of the factor set)
 - When we create new factors, we might make a set of variables larger.

Some Notes on the VE Algorithm

- The size of the resulting factors is determined by elimination ordering! (We'll see this in detail)
- For *polytrees*, easy to find good ordering (e.g., work outside in).
- For general BNs, sometimes good orderings exist, sometimes they don't (then inference is exponential in number of vars).
 - Simply *finding* the optimal elimination ordering for general BNs is NP-hard.
 - Inference in general is NP-hard in general BNs

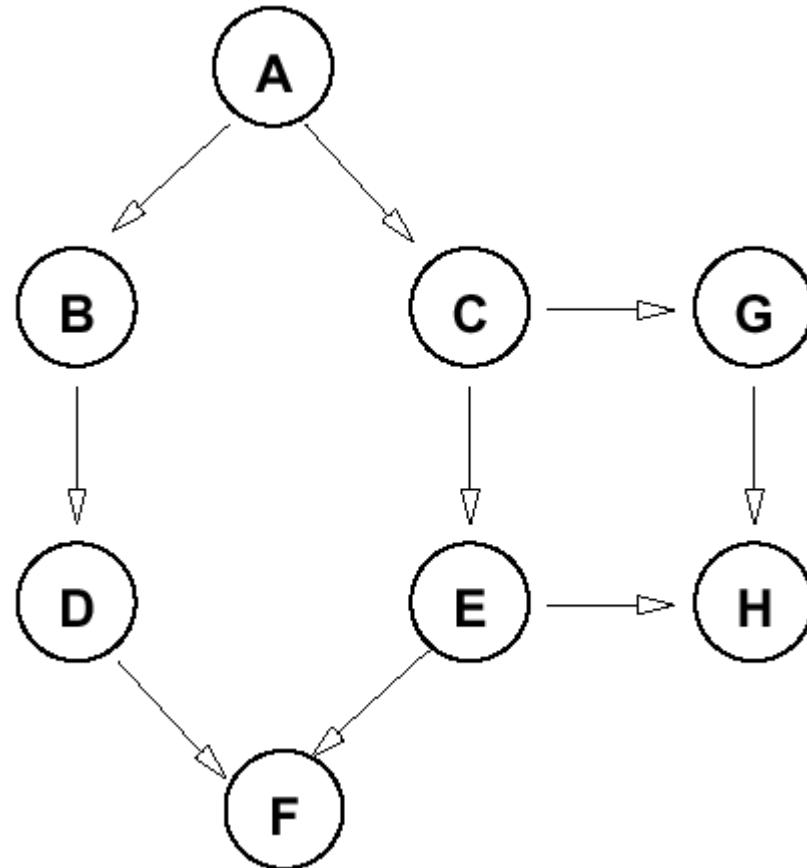
Elimination Ordering: Polytrees

- Inference is linear in size of network
 - ordering: eliminate only “singly-connected” nodes
 - e.g., in this network, eliminate D, A, C, X₁,...; or eliminate X₁,... X_k, D, A, C; or mix up...
 - result: no factor ever larger than original CPTs
 - eliminating B before these gives factors that include all of A,C, X₁,... X_k !!!



Effect of Different Orderings

- Suppose query variable is D. Consider different orderings for this network
 - A,F,H,G,B,C,E:
 - good: why?
 - E,C,A,B,G,H,F:
 - bad: why?
- Which ordering creates smallest factors?
 - either max size or total
- which creates largest factors?



Relevance

- Certain variables have no impact on the query.
 - In ABC network, computing $\Pr(A)$ with no evidence requires elimination of B and C.
 - But when you sum out these vars, you compute a trivial factor (whose value are all ones); for example:
 - eliminating C: $f_4(B) = \sum_C f_3(B,C) = \sum_C \Pr(C|B)$
 - 1 for any value of B (e.g., $\Pr(c|b) + \Pr(\sim c|b) = 1$)
 - No need to think about B or C for this query

Relevance: A Sound Approximation

- Can restrict attention to *relevant* variables. Given query Q , evidence E :
 - Q is relevant
 - if any node Z is relevant, its parents are relevant
 - if $E \in E$ is a descendent of a relevant node, then E is relevant
- We can restrict our attention to the *subnetwork comprising only relevant variables* when evaluating a query Q

Relevance: Examples

- Query: $P(F)$
 - Relevant: F, C, B, A
- Query: $P(F|E)$
 - Relevant: F, C, B, A
 - Also: E , hence D, G
 - Intuitively, we need to compute $P(C|E) = \alpha P(C)P(E|C)$ to accurately compute $P(F|E)$
- Query: $P(F|E, C)$
 - Algorithm says all variables relevant; but really none except C, F since C cuts off all influence of others)
 - Algorithm is overestimating relevant set

