

Lecture 6: Bayesian Networks

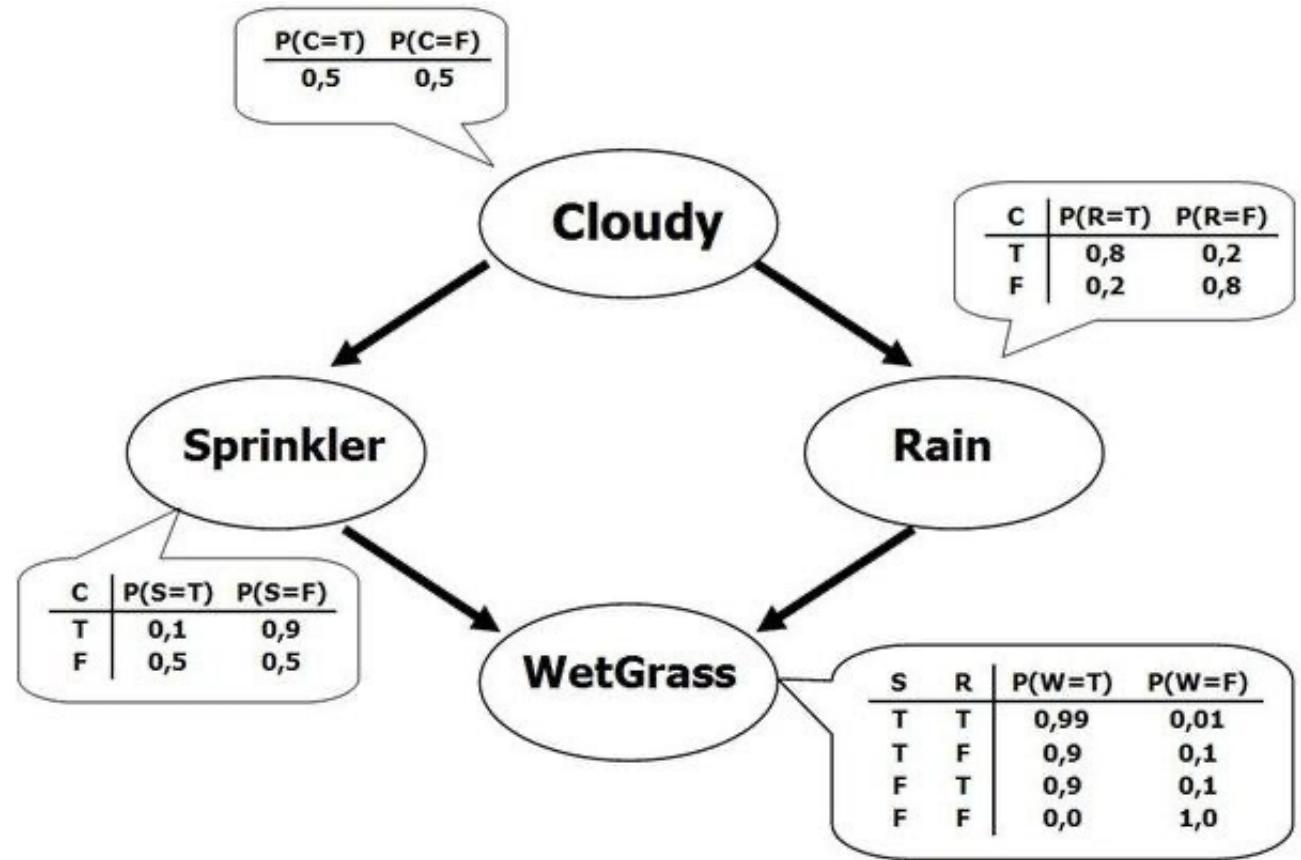
CS486/686 Intro to Artificial Intelligence

2026-1-22

Pascal Poupart
David R. Cheriton School of Computer Science

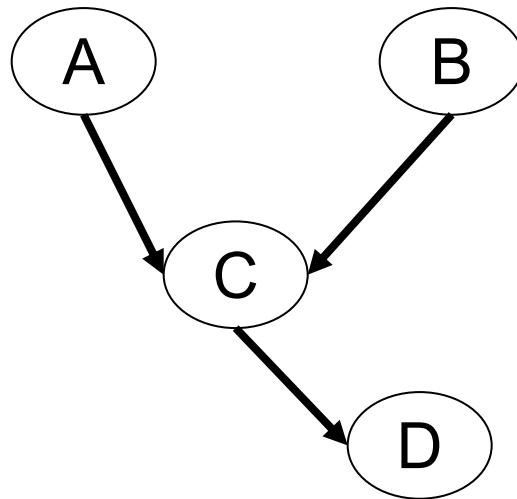
Bayesian Networks (BN)

- *Graphical representation* of the direct dependencies over a set of variables + a set of *conditional probability tables (CPTs)* quantifying the strength of those influences.
- A BN over variables $\{X_1, X_2, \dots, X_n\}$ consists of:
 - a DAG whose nodes are the variables
 - a set of CPTs ($\Pr(X_i \mid \text{Parents}(X_i))$) for each X_i



Bayesian Networks

- Also known as
 - Belief networks
 - Probabilistic networks
- Key notions
 - parents of a node: $Par(X_i)$
 - children of node
 - descendants of a node
 - ancestors of a node
 - family: set of nodes consisting of X_i and its parents
 - CPTs are defined over families in the BN



$Parents(C) = \{A, B\}$

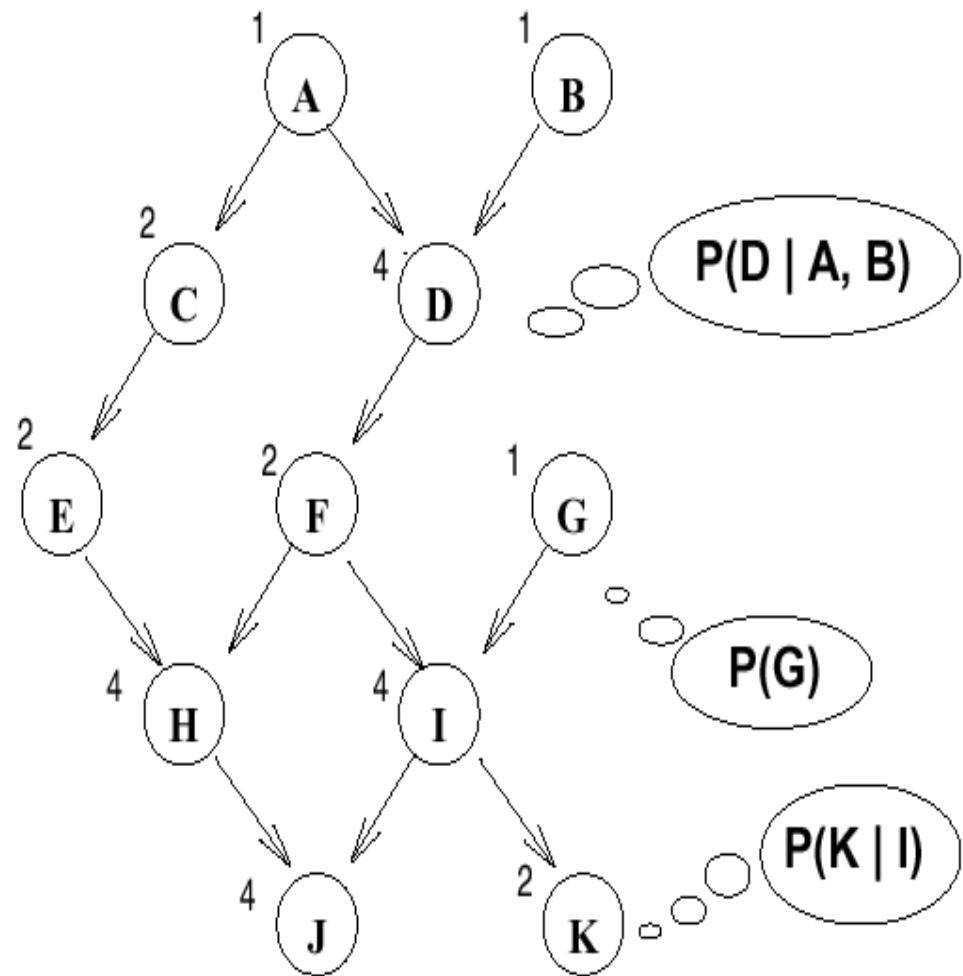
$Children(A) = \{C\}$

$Descendents(B) = \{C, D\}$

$Ancestors(D) = \{A, B, C\}$

$Family\{C\} = \{C, A, B\}$

An Example Bayes Net



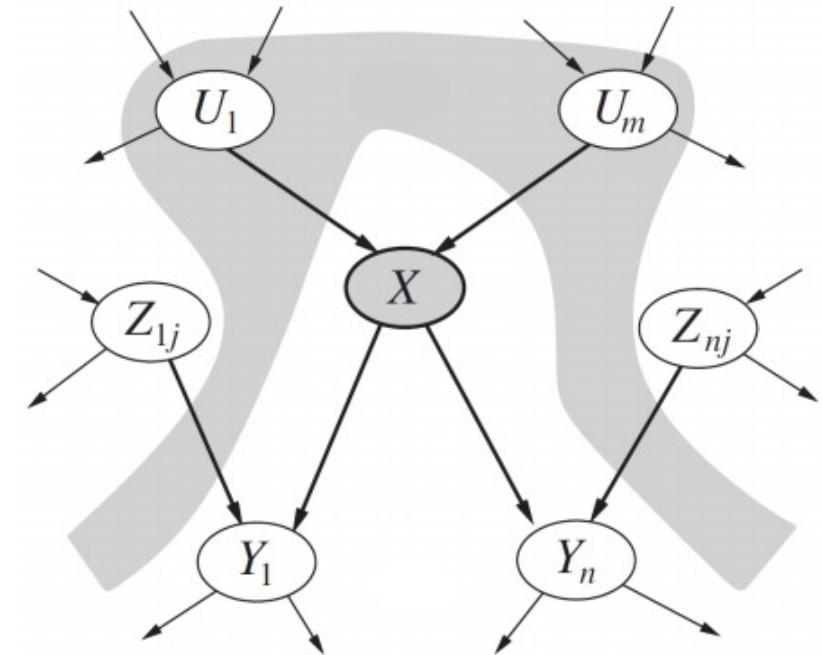
- A few CPTs are “shown”
- Explicit joint requires $2^{11} - 1 = 2047$ parameters
- BN requires only 27 params (the number of entries for each CPT is listed)

Semantics of a Bayes Net

- The structure of the BN means: every X_i is *conditionally independent of all of its non-descendants given its parents*:

$$\Pr(X_i | S \cup \text{Par}(X_i)) = \Pr(X_i | \text{Par}(X_i))$$

for any subset $S \subseteq \text{NonDescendants}(X_i)$



Semantics of Bayes Nets

- If we ask for $\Pr(x_1, x_2, \dots, x_n)$
 - assuming an ordering consistent with the network

- By the chain rule, we have:

$$\Pr(x_1, x_2, \dots, x_n)$$

$$= \Pr(x_n | x_{n-1}, \dots, x_1) \Pr(x_{n-1} | x_{n-2}, \dots, x_1) \dots \Pr(x_1)$$

$$= \Pr(x_n | \text{Par}(x_n)) \Pr(x_{n-1} | \text{Par}(x_{n-1})) \dots \Pr(x_1)$$

- Thus, the joint is recoverable using the parameters (CPTs) specified in an arbitrary BN

Constructing a Bayes Net

- Given any distribution over variables X_1, X_2, \dots, X_n , we can construct a Bayes net that faithfully represents that distribution.

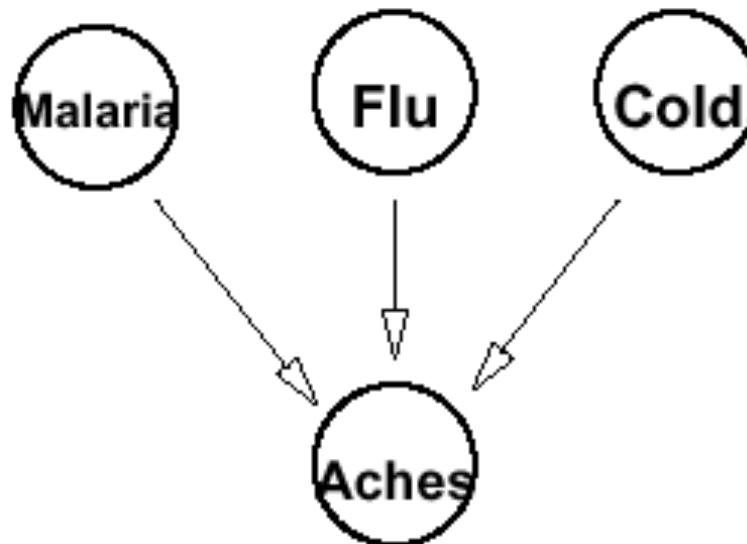
Take any ordering of the variables (say, the order given), and go through the following procedure for X_n down to X_1 .

- Let $Par(X_n)$ be any subset $S \subseteq \{X_1, \dots, X_{n-1}\}$ such that X_n is independent of $\{X_1, \dots, X_{n-1}\} - S$ given S . Such a subset must exist (convince yourself).
- Then determine the parents of X_{n-1} in the same way, finding a similar $S \subseteq \{X_1, \dots, X_{n-2}\}$, and so on.

In the end, a DAG is produced and the BN semantics must hold by construction.

Causal Intuitions

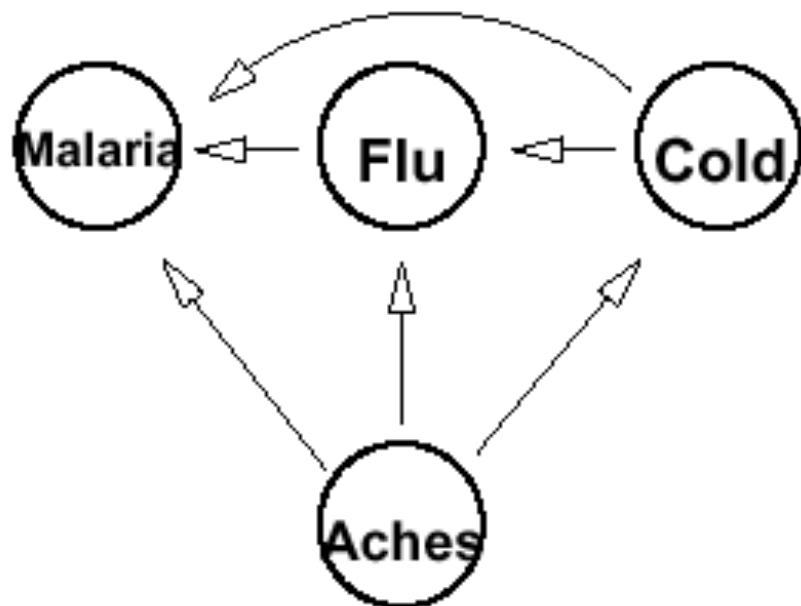
- The construction of a BN is simple
 - works with arbitrary orderings of variable set
 - but some orderings are much better than others!
 - generally, if ordering/dependence structure reflects causal intuitions, a more natural, compact BN results



- In this BN, we used the ordering Mal, Cold, Flu, Aches to build BN for joint distribution P
- Variable can only have parents that come earlier in the ordering

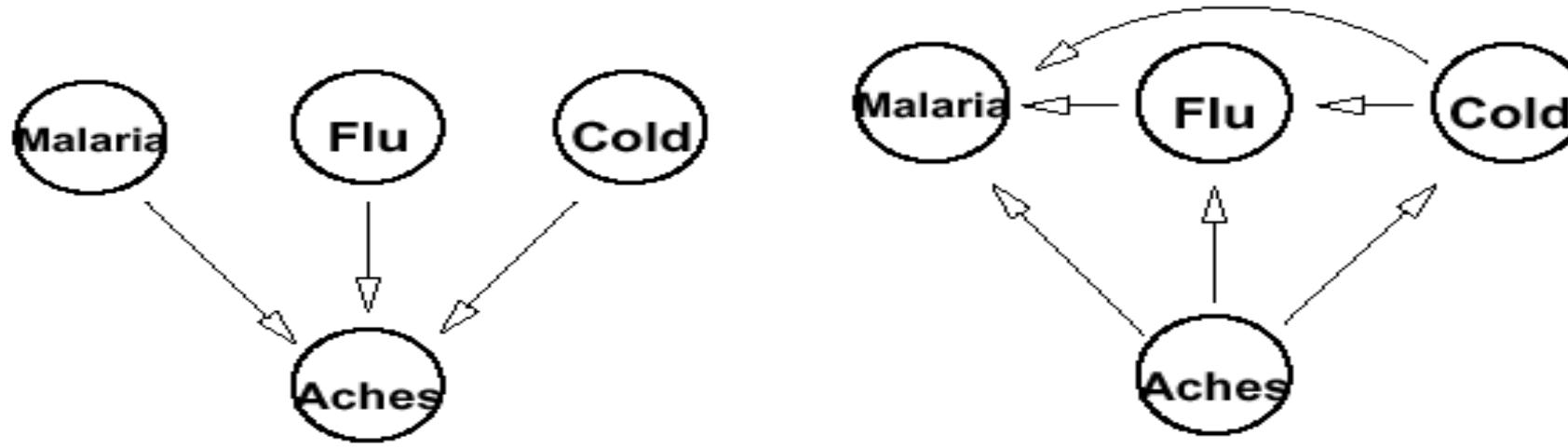
Causal Intuitions

- Suppose we build the BN for distribution P using the opposite ordering
 - i.e., we use ordering Aches, Cold, Flu, Malaria
 - resulting network is more complicated!



- Mal depends on Aches; but it also depends on Cold, Flu *given* Aches
 - Cold, Flu **explain away** Mal given Aches
- Flu depends on Aches; but also on Cold *given* Aches
- Cold depends on Aches

Compactness



$$1+1+1+8=11 \text{ numbers}$$

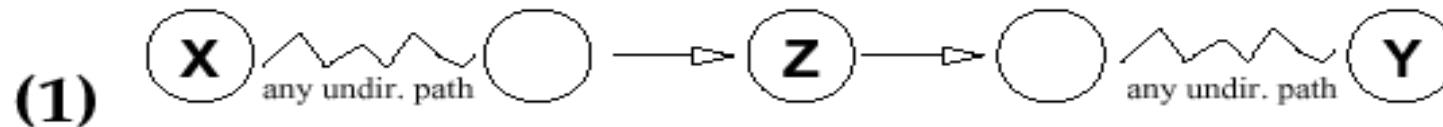
$$1+2+4+8=15 \text{ numbers}$$

In general, if each random variable is directly influenced by at most k others, then each CPT will be at most 2^k . Thus, the entire network of n variables is specified by $n2^k$.

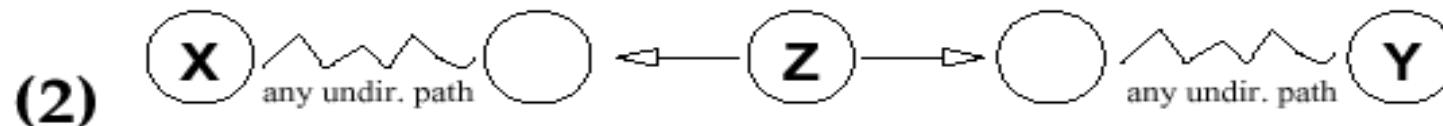
Testing Independence

- Given BN, how do we determine if two variables X, Y are independent (given evidence E)?
 - we use a (simple) graphical property
- **D-separation:** A set of variables E *d-separates* X and Y if it *blocks every undirected path* in the BN between X and Y .
- X and Y are conditionally independent given evidence E if E d-separates X and Y
 - Thus, BN gives us an easy way to tell if two variables are independent (set $E = \emptyset$) or cond. independent

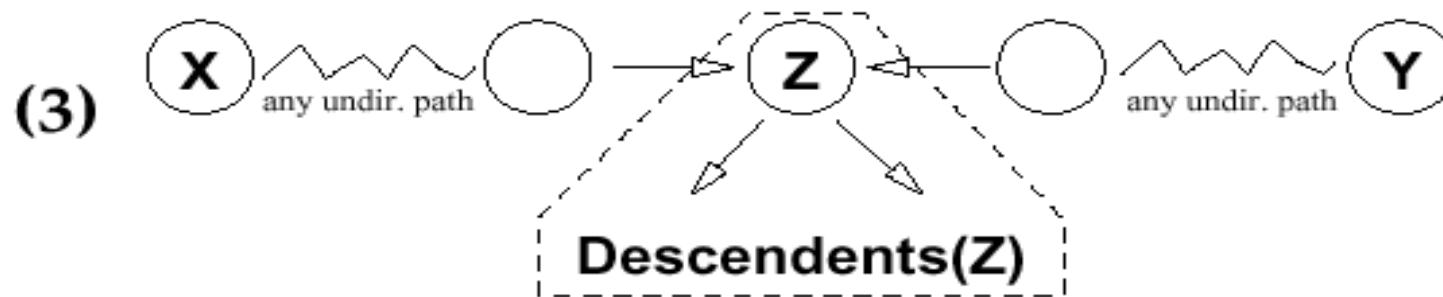
Blocking: Graphical View



If Z in evidence, the path between X and Y blocked



If Z in evidence, the path between X and Y blocked

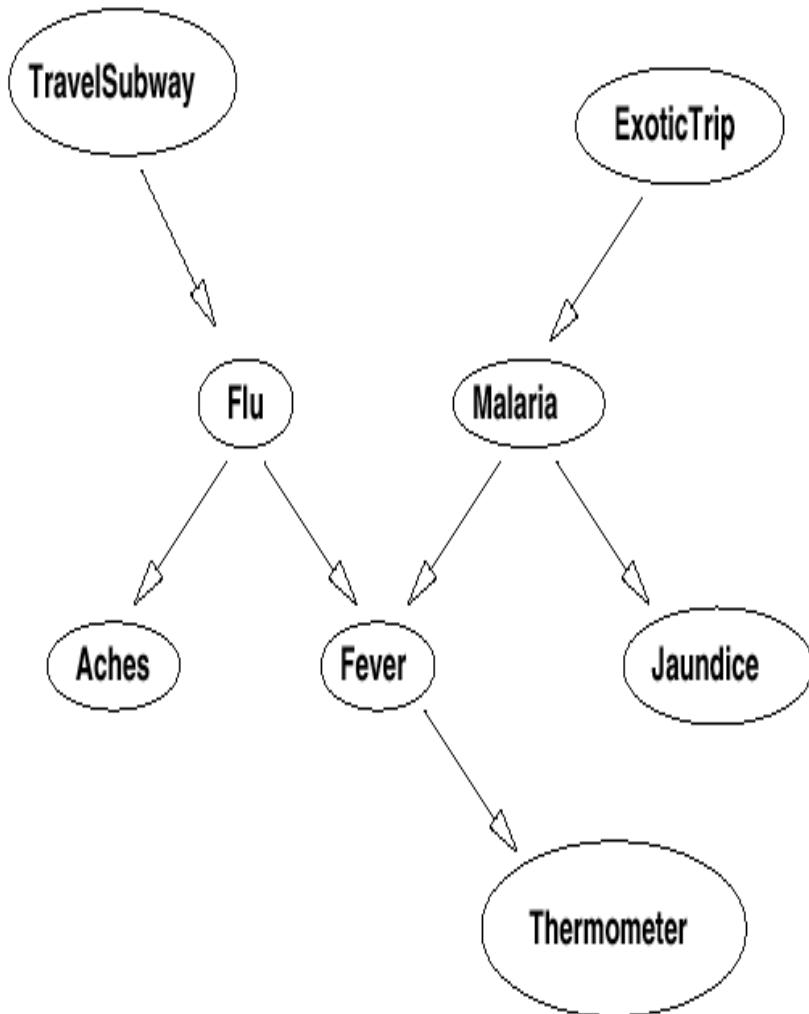


If Z is **not** in evidence and **no** descendent of Z is in evidence, then the path between X and Y is blocked

Blocking in D-Separation

- Let P be an undirected path from X to Y in a BN. Let E be an evidence set. We say E *blocks path* P iff there is some node Z on the path such that:
 - Case 1:** one arc on P *goes into* Z and one *goes out* of Z , and $Z \in E$; or
 - Case 2:** both arcs on P leave Z , and $Z \in E$; or
 - Case 3:** both arcs on P enter Z and *neither* Z , *nor any of its descendants*, are in E .

D-Separation: Intuitions



1. Subway and Thermometer?
2. Aches and Fever?
3. Aches and Thermometer?
4. Flu and Malaria?
5. Subway and ExoticTrip?

D-Separation: Intuitions

- Subway and Thermometer are dependent; but are independent given Flu (since Flu blocks the only path)
- Aches and Fever are dependent; but are independent given Flu (since Flu blocks the only path). Similarly for Aches and Thermometer (dependent, but independent given Flu).
- Flu and Mal are independent (given no evidence): Fever blocks the path, since it is *not in evidence*, nor is its descendant Thermometer. Flu, Malaria are dependent given Fever (or given Thermometer): nothing blocks path now.
- Subway, ExoticTrip are independent; they are dependent given Thermometer; they are independent given Thermometer and Malaria. This for exactly the same reasons for Flu/Malaria above.

Inference in Bayes Nets

- The independence sanctioned by D-separation (and other methods) allows us to compute prior and posterior probabilities quite effectively.
- We'll look at a few simple examples to illustrate. We'll focus on networks without *loops*. (A loop is a cycle in the underlying *undirected* graph. Recall the directed graph has no cycles.)

Simple Forward Inference (Chain)

- Computing marginal requires simple forward “propagation” of probabilities

$$P(J) = \sum_{M, ET} P(J|M, ET)$$

(marginalization)

$$P(J) = \sum_{M, ET} P(J|M, ET)P(M|ET)P(ET)$$

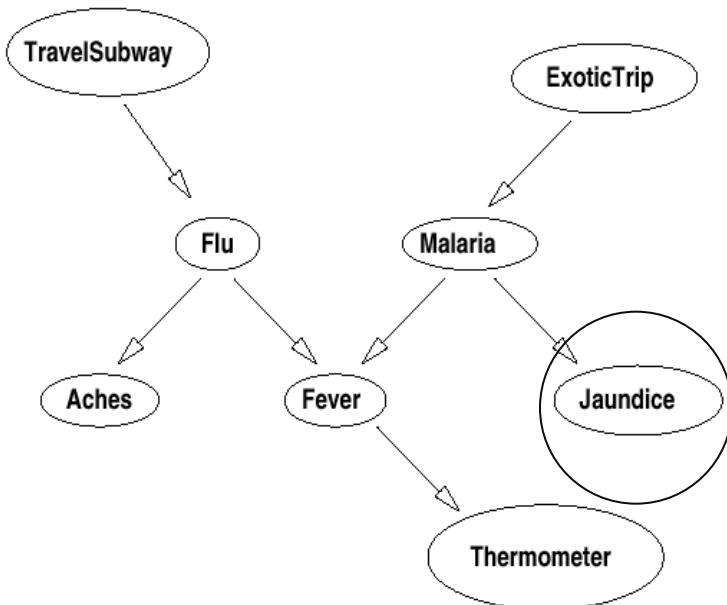
(chain rule)

$$P(J) = \sum_{M, ET} P(J|M)P(M|ET)P(ET)$$

(conditional independence)

$$P(J) = \sum_M P(J|M) \sum_{ET} P(M|ET)P(ET)$$

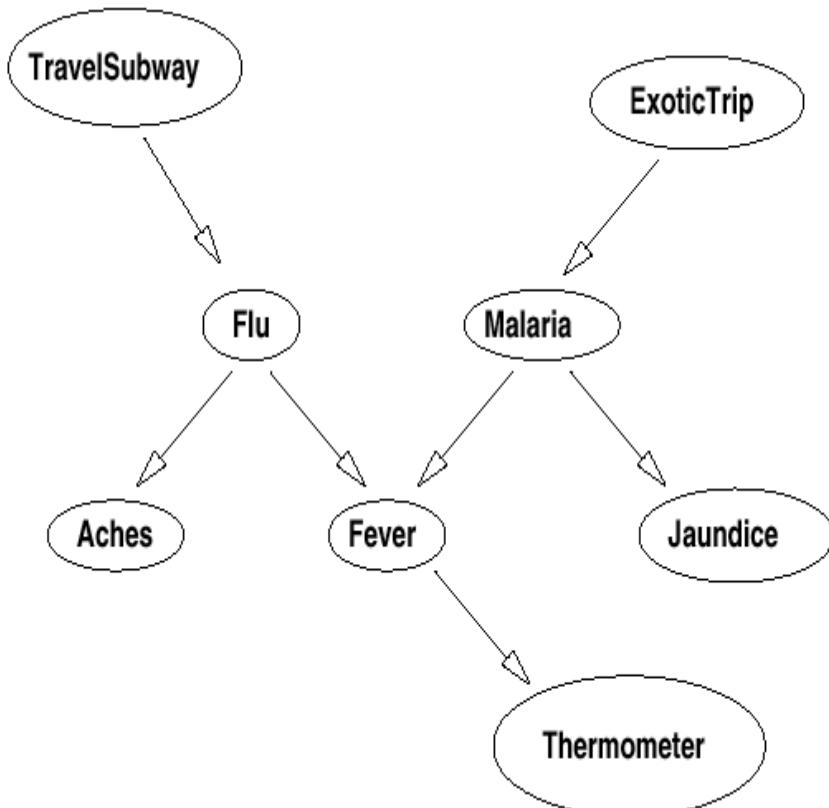
(distribution of sum)



Note: all (final) terms are CPTs in the BN
Note: only ancestors of J considered

Simple Forward Inference (Chain)

- Same idea applies when we have “upstream” evidence



$$P(J|ET) = \sum_M P(J, M|ET)$$

(marginalisation)

$$P(J|ET) = \sum_M P(J|M, ET) P(M|ET)$$

(chain rule)

$$P(J|ET) = \sum_M P(J|M) P(M|ET)$$

(conditional independence)

Simple Backward Inference

- When evidence is downstream of query variable, we must reason “backwards.” This requires the use of Bayes rule:

$$P(ET | j) = \alpha P(j | ET) P(ET)$$

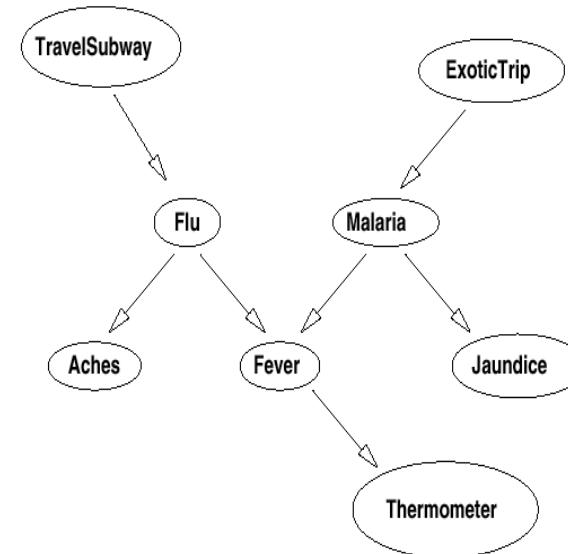
$$= \alpha \sum_M P(j, M | ET) P(ET)$$

$$= \alpha \sum_M P(j | M, ET) P(M | ET) P(ET)$$

$$= \alpha \sum_M P(j | M) P(M | ET) P(ET)$$

- First step is just Bayes rule

- normalizing constant α is $1/P(j)$; but we needn’t compute it explicitly if we compute $P(ET | j)$ for each value of ET: we just add up terms $P(j | ET) P(ET)$ for all values of ET (they sum to $P(j)$)



Variable Elimination

- The intuitions in the above examples give us a simple inference algorithm for networks without loops: the *polytree* algorithm.
- Instead, we'll look at a more general algorithm that works for general BNs; but the polytree algorithm will be a special case.
- The algorithm, ***variable elimination***, simply applies the summing out rule repeatedly.
 - To keep computation simple, it exploits the independence in the network and the ability to distribute sums inward

Factors

- A function $f(X_1, X_2, \dots, X_k)$ is also called a *factor*. We can view this as a table of numbers, one for each instantiation of the variables X_1, X_2, \dots, X_k .
 - A tabular representation of a factor is exponential in k
- Each CPT in a Bayes net is a factor:
 - e.g., $\Pr(C|A,B)$ is a function of three variables, A, B, C
- Notation: $f(\mathbf{X}, \mathbf{Y})$ denotes a factor over the variables $\mathbf{X} \cup \mathbf{Y}$. (Here \mathbf{X}, \mathbf{Y} are *sets* of variables.)

The Product of Two Factors

- Let $f(\mathbf{X}, \mathbf{Y})$ & $g(\mathbf{Y}, \mathbf{Z})$ be two factors with variables \mathbf{Y} in common
- The *product* of f and g , denoted $h = f \times g$ (or sometimes just $h = fg$), is defined:

$$h(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) = f(\mathbf{X}, \mathbf{Y}) \times g(\mathbf{Y}, \mathbf{Z})$$

$f(A, B)$		$g(B, C)$		$h(A, B, C)$			
ab	0.9	bc	0.7	abc	0.63	ab~c	0.27
a~b	0.1	b~c	0.3	a~bc	0.02	a~b~c	0.08
~ab	0.4	~bc	0.2	~abc	0.28	~ab~c	0.12
~a~b	0.6	~b~c	0.8	~a~bc	0.12	~a~b~c	0.48

Summing a Variable Out of a Factor

- Let $f(X, Y)$ be a factor with variable X (Y is a set)
- We *sum out* variable X from f to produce a new factor $h = \sum_X f$,
which is defined:
$$h(Y) = \sum_{X \in \text{Dom}(X)} f(x, Y)$$

$f(A, B)$		$h(B)$	
ab	0.9	b	1.3
$a \sim b$	0.1	$\sim b$	0.7
$\sim ab$	0.4		
$\sim a \sim b$	0.6		

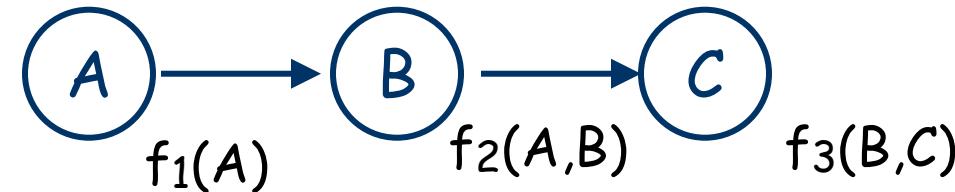
Restricting a Factor

- Let $f(X, Y)$ be a factor with variable X (Y is a set)
- We *restrict* factor f *to* $X=x$ by setting X to the value x and “deleting”. Define $h = f_{X=x}$ as: $h(Y) = f(x, Y)$

$f(A, B)$		$h(B) = f_{A=a}$	
ab	0.9	b	0.9
$a \sim b$	0.1	$\sim b$	0.1
$\sim ab$	0.4		
$\sim a \sim b$	0.6		

Variable Elimination: No Evidence

- Computing prior probability of query var X can be seen as applying these operations on factors

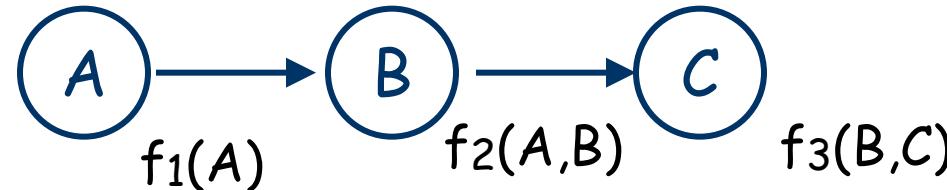


- $$\begin{aligned} P(C) &= \sum_{A,B} P(C|B) P(B|A) P(A) \\ &= \sum_B P(C|B) \sum_A P(B|A) P(A) \\ &= \sum_B f_3(B,C) \sum_A f_2(A,B) f_1(A) \\ &= \sum_B f_3(B,C) f_4(B) = f_5(C) \end{aligned}$$

Define new factors: $f_4(B) = \sum_A f_2(A,B) f_1(A)$ and $f_5(C) = \sum_B f_3(B,C) f_4(B)$

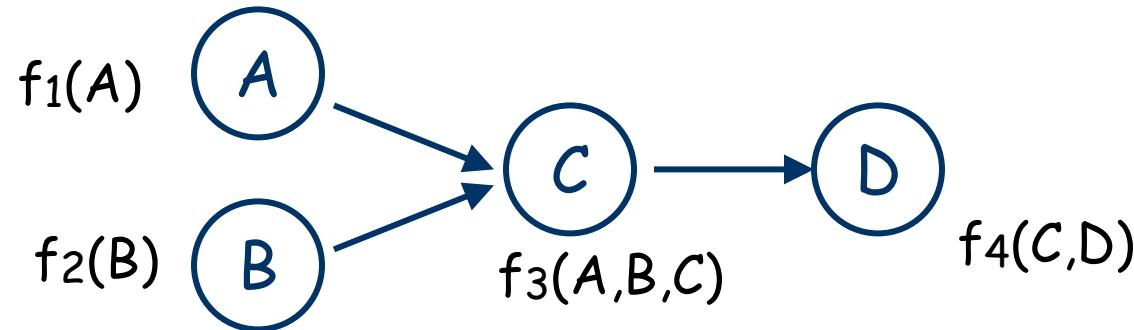
Variable Elimination: No Evidence

- Here's the example with some numbers



$f_1(A)$		$f_2(A,B)$		$f_3(B,C)$		$f_4(B)$		$f_5(C)$	
a	0.9	ab	0.9	bc	0.7	b	0.85	c	0.625
$\sim a$	0.1	$a\sim b$	0.1	$b\sim c$	0.3	$\sim b$	0.15	$\sim c$	0.375
		$\sim ab$	0.4	$\sim bc$	0.2				
		$\sim a\sim b$	0.6	$\sim b\sim c$	0.8				

VE: No Evidence (Example 2)



$$\begin{aligned} P(D) &= \sum_{A,B,C} P(D|C) P(C|B,A) P(B) P(A) \\ &= \sum_C P(D|C) \sum_B P(B) \sum_A P(C|B,A) P(A) \\ &= \sum_C f_4(C,D) \sum_B f_2(B) \sum_A f_3(A,B,C) f_1(A) \\ &= \sum_C f_4(C,D) \sum_B f_2(B) f_5(B,C) \\ &= \sum_C f_4(C,D) f_6(C) \\ &= f_7(D) \end{aligned}$$

Define new factors: $f_5(B,C)$, $f_6(C)$, $f_7(D)$, in the obvious way

Variable Elimination: One View

- One way to think of variable elimination:
 - write out desired computation using the chain rule, exploiting the independence relations in the network
 - arrange the terms in a convenient fashion
 - distribute each sum (over each variable) in as far as it will go
 - i.e., the sum over variable X can be “pushed in” as far as the “first” factor mentioning X
 - apply operations “inside out”, repeatedly eliminating and creating new factors (note that each step/removal of a sum eliminates one variable)

Variable Elimination Algorithm

- Given query var Q , remaining vars Z . Let F be the set of factors corresponding to CPTs for $\{Q\} \cup Z$.

1. Choose an elimination ordering Z_1, \dots, Z_n of variables in Z .
2. For each Z_j -- in the order given -- eliminate $Z_j \in Z$ as follows:
 - (a) Compute new factor $g_j = \sum_{Z_j} f_1 \times f_2 \times \dots \times f_k$, where the f_i are the factors in F that include Z_j
 - (b) Remove the factors f_i (that mention Z_j) from F and add new factor g_j to F
3. The remaining factors refer only to the query variable Q . Take their product and normalize to produce $P(Q)$

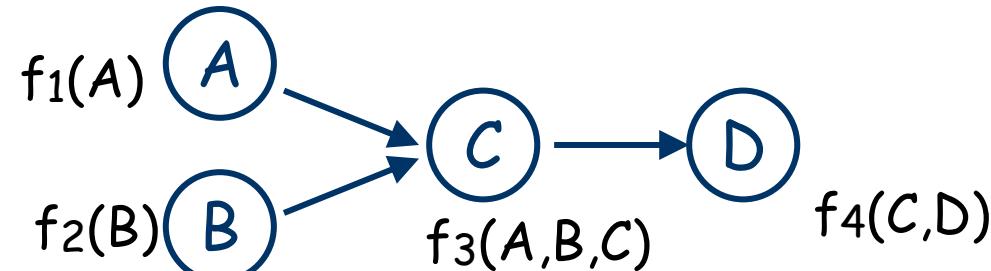
VE: Example 2 again

Factors: $f_1(A)$ $f_2(B)$

$f_3(A,B,C)$ $f_4(C,D)$

Query: $P(D)$?

Elim. Order: A, B, C



Step 1: Add $f_5(B,C) = \sum_A f_3(A,B,C) f_1(A)$

Remove: $f_1(A)$, $f_3(A,B,C)$

Step 2: Add $f_6(C) = \sum_B f_2(B) f_5(B,C)$

Remove: $f_2(B)$, $f_5(B,C)$

Step 3: Add $f_7(D) = \sum_C f_4(C,D) f_6(C)$

Remove: $f_4(C,D)$, $f_6(C)$

Last factor $f_7(D)$ is (possibly unnormalized) probability $P(D)$