Lecture 6: Bayesian Networks
CS486/686 Intro to Artificial Intelligence

2026-1-22

Pascal Poupart
David R. Cheriton School of Computer Science

%’ WATERLOO

Bayesian Networks (BN)

[p(c=T) P(C=F) |
0,5 0,5

= Graphical representation of the
direct dependencies over a set of _

variables + a set of conditional @ |$ o=n) rezr)
probability tables (CPTs) / | o2 o5

quantifying the strength of those
influences. o
RN

= A BN over variables {Xi, X3, ..., Xa} | o5 o) @
consists of:

S R | P(W=T) P(W=F)
T T| 099 0,01
;3 F 0,9 0,1
B F 0,9 0,1

= a DAG whose nodes are the variables F F| 00 1,0

= aset of CPTs (Pr(Xi | Parents(Xi)) for each X;

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 2 @ WATE RLOO

Bayesian Networks A o

= Also known as
= Belief networks G
= Probabilistic networks e
= Key notions
» parents of a node: Par(X,) Parents(C) = {4, B}
= children of node Children(A) = {C}
= descendants of a node Descendents(B) = {C,D}
= ancestors of a node Ancestors{D} = {A, B, C}

= family: set of nodes consisting of X;and its parents pamily(C) = {C, A, B}
= CPTs are defined over families in the BN T

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 3 @ WATE RLOO

An Example Bayes Net

1 1
R / = A few CPTs are “shown”

2
' c::>© « Explicit joint requires 21 — 1
= 2047 parameters

\ /p /QD D = BN requires only 27 params
\

(the number of entries for

@ \@ each CPT is listed)
O

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 4 @ WATE RLOO

Semantics of a Bayes Net

= The structure of the BN means: every X; is
conditionally independent of all of its
non-descendants given its parents:

Pr(X;|S U Par(X;)) = Pr(X;| Par(X;))

for any subset S € NonDescendants(X;)

CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 5

&>

UNIVERSITY OF

WATERLOO

Semantics of Bayes Nets

= If we ask for Pr(xi, xz, ..., x»)
= assuming an ordering consistent with the network

= By the chain rule, we have:
Pr(xy, xa, ..., Xx2)
= Pr(x,|x,—1, ..., X1) Pr(x,_1|X_2, ..., X1) ... Pr(x;)
= Pr(x,|Par(x,)) Pr(x,,_1|Par(x,,_1)) ... Pr(x;)

= Thus, the joint is recoverable using the parameters (CPTs)
specified in an arbitrary BN

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 6 @ WATE RLOO

Constructing a Bayes Net

= Given any distribution over variables X, X,, ..., X,,, we can construct
a Bayes net that faithfully represents that distribution.

Take any ordering of the variables (say, the order given), and go through the
following procedure for X;, down to X1.

* Let Par(X,,) be any subset S € {X;, ..., X,,_1} such that X;, is independent of
{X4,...,X,_1} — Sgiven S. Such a subset must exist (convince yourself).

°* Then determine the parents of X,,_; in the same way, finding a similar § S
{X4,...,Xn—2}, and so on.

In the end, a DAG is produced and the BN semantics must hold by construction.

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 7 @ WATE RLOO

Causal Intuitions

= The construction of a BN is simple
= works with arbitrary orderings of variable set
= but some orderings are much better than others!
= generally, if ordering/dependence structure reflects causal
intuitions, a more natural, compact BN results

@ @ = In this BN, we used the ordering
Mal, Cold, Flu, Aches to build BN
J} for joint distribution P
= Variable can only have parents that
come earlier in the ordering
% UNIVERSITY OF

CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 8 @ WATE RLOO

Causal Intuitions
= Suppose we build the BN for distribution P using the opposite ordering
= i.e., we use ordering Aches, Cold, Flu, Malaria

= resulting network is more complicated!

= Mal depends on Aches; but it also
/_\ depends on Cold, Flu given Aches
= @ = = Cold, Flu explain away Mal given Aches
= Flu depends on Aches; but also on
Cold given Aches
= Cold depends on Aches

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 9 @ WATE RLOO

Compactness
® @ ©F @

|
Ny

1+1+1+8=11 numbers 1+2+4+8=15 numbers

In general, if each random variable is directly influenced by at most k others,
then each CPT will be at most 2. Thus, the entire network of n variables is
specified by n2k.

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 10 @ WATERLOO

Testing Independence
= Given BN, how do we determine if two variables X, Y are
independent (given evidence E)?
= we use a (simple) graphical property

= D-separation: A set of variables E d-separates X and Y if it
blocks every undirected path in the BN between X and Y.

= X and Y are conditionally independent given evidence E if E
d-separates X and Y

= Thus, BN gives us an easy way to tell if two variables are independent
(set E = @) or cond. independent

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 11 @ WATERLOO

Blocking: Graphical View
(1) ® any undir. path e @—bo any undir. path

If Z in evidence, the path between X and Y blocked

(2) any undir. palh any undir. plth

If Z in evidence, the path between X and Y blocked

00D Q —/&@%Q
(3) any undir. path any undir. path

/ ‘n.

. Descendents(Z)

If Zis not in evidence andno descendent of Z is in evidence,
then the path between X and Y is blocked

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 12 @ WATERLOO

Blocking in D-Separation

= Let P be an undirected path from X to Y in a BN. Let E be an
evidence set. We say E blocks path P iff there is some node Z on
the path such that:

= Case 1: one arc on P goes into Z and one goes out of Z,and Z € E; or
= Case 2: both arcson P leave Z,and Z € E; or

= Case 3: both arcs on P enter Z and neither Z, nor any of its
descendants, are in E.

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 13 @ WATERLOO

D-Separation: Intuitions

TravelSubway

/
®

/\/\

PAGE 14

CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart

1. Subway and
Thermometer?

2.Aches and Fever?

3.Aches and
Thermometer?

4.Flu and Malaria?

5. Subway and
ExoticTrip?

%’ WATERLOO

D-Separation: Intuitions

= Subway and Thermometer are dependent; but are independent given Flu (since
Flu blocks the only path)

= Aches and Fever are dependent; but are independent given Flu (since Flu blocks
the only path). Similarly for Aches and Thermometer (dependent, but
independent given Flu).

= Flu and Mal are independent (given no evidence): Fever blocks the path, since it
1S not in evidence, nor is its descendant Thermometer. Flu, Malaria are
dependent given Fever (or given Thermometer): nothing blocks path now.

= Subway, ExoticTrip are independent; they are dependent given Thermometer;
they are independent given Thermometer and Malaria. This for exactly the same
reasons for Flu/Malaria above.

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 15 @ WATERLOO

Inference in Bayes Nets

= The independence sanctioned by D-separation (and other methods)
allows us to compute prior and posterior probabilities quite effectively.

= We'll look at a few simple examples to illustrate. We'll focus on
networks without loops. (A loop is a cycle in the underlying undirected
graph. Recall the directed graph has no cycles.)

UNIVERSITY OF

CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 16 Eg WATERLOO

Simple Forward Inference (Chain)

= Computing marginal requires simple forward “propagation” of

probabilities P(J)=2y 5 P(J,M,ET)
(marginalization)
N P(J)=Ey gr PJIM,ET)P(M|ET)P(ET)
/ (chain rule)
/@

\ / P(J)=ZM,ET P(JIM)P(M|ET)P(ET)
| (conditional independence)
AW P(J)=2\P(J|M)ZxP(M|ET)P(ET)
(distribution of sum)

Note: all (final) terms are CPTs in the BN
Note: only ancestors of J considered

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 17 @ WATERLOO

Simple Forward Inference (Chain)

= Same idea applies when we have “upstream” evidence

.ravelSubway
P(J|ET) = =,,P(J,M|ET)
\ / (marginalisation)

() P(J|ET) = 2 P(J|M,ET) P(M|ET)

/ \ / \ (chain rule)

\ P(J|ET) = 2 P(J|M) P(M|ET)

(conditional independence)
Thermometer
UNIVERSITY OF

CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 18 Eg WATERLOO

Simple Backward Inference

» When evidence is downstream of query variable, we must reason
“backwards.” This requires the use of Bayes rule:

P(ET |j) = a P(j | ET) P(ET)
— a 3y P(,M|ET) P(ET) \ J/
, ()
— a Xy PGIM,ET) P(M|ET) P(ET) VaNYaN
— a 3y P|M) P(M|ET) P(ET)

N\
» First step is just Bayes rule

= normalizing constant a is 1/P(j); but we needn’t compute it explicitly if we

compute P(ET | j) for each value of ET: we just add up terms P(j | ET) P(ET)
for all values of ET (they sum to P(j))

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 19 @ WATERLOO

Variable Elimination

= The intuitions in the above examples give us a simple inference algorithm for
networks without loops: the polytree algorithm.

= Instead, we'll look at a more general algorithm that works for general BNs; but
the polytree algorithm will be a special case.

= The algorithm, variable elimination, simply applies the summing out rule
repeatedly.

= To keep computation simple, it exploits the independence in the network and the ability to
distribute sums inward

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 20 @ WATERLOO

Factors

= A function f(Xy, X5,..., X}) is also called a factor. We can view this as a
table of numbers, one for each instantiation of the variables Xy, Xo,..., XJ.

= A tabular representation of a factor is exponential in k
= Each CPT in a Bayes net is a factor:
= e.g., Pr(C|A,B) is a function of three variables, A, B, C

= Notation: f(X,Y) denotes a factor over the variables X UY. (Here X, Y are
sets of variables.)

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 21 @ WATERLOO

The Product of Two Factors

= Let {(X,Y) & g(Y,Z) be two factors with variables Y in common

= The product of f and g, denoted h = fx g (or sometimes just h = {g), is defined:
h(X,Y,Z) = {(X,Y) x g(Y,Z)

f(A,B) g(B,C) h(A,B,C)

ab 0.9 bc 0.7 | abc [0.63| ab~c |0.27
a~b | 0.1 | b~c | 0.3 | a~bc [0.02| a~b~c |0.08
~ab | 04 | ~bc | 0.2 | ~abc |0.28| ~ab~c | 0.12
~a~b | 0.6 | ~b~c| 0.8 |~a~bc|0.12 | ~a~b~c|0.48

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 22 @ WATERLOO

Summing a Variable Out of a Factor
» Let f(X,Y) be a factor with variable X (Y is a set)

= We sum out variable X from f to produce a new factor h = ZX f,

which is defined: h(Y) = Zxc Dom(X) f(x,Y)

f(A,B) h(B)
ab | 09| b 1.3
a~b | 01 | ~b | 0.7
~ab | 0.4
~a~b| 0.6

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 23 @ WATERLOO

Restricting a Factor

» Let f(X,Y) be a factor with variable X (Y is a set)

= We restrict factor f to X=x by setting X to the value x and “deleting”.
Define h = fx=x as: h(Y) ={(x,Y)

f(AB) |h(B)="fA=q
ab | 09| b 0.9
a~b | 0.1 | ~b 0.1

~ab | 0.4

~a~b| 0.6

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 24 @ WATERLOO

Variable Elimination: No Evidence

= Computing prior probability of query var X can be seen as applying
these operations on factors

OO0

f1(A) 2
+ P(C) = £o P(C|B) P(B|A) P(A)
= 2.3 P(C|B) 24 P(B|A) P(A)
= 2 f3(B,C) X4 f2(A,B) f1(A)
= 2. f3(B,C) f4(B) = f5(C)
Define new factors: f4(B)= 24 f2(A,B) f1(A) and f5(C)= Xp f3(B,C) f4(B)

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 25 @ WATERLOO

f3(B,C)

Variable Elimination: No Evidence

= Here’s the example with some numbers

@_'Z(A,B) C £3(B.C)

f1(A)

fi(A) | fa(AB) [f3(BC) | f4(B) | fs(C)
a |09 a [09] bec [07] b |085] ¢ |0.625
~a | 01 [a~b | 01| b~e [03] ~b |0.15] ~c | 0.375
~ab |04 ~bc |0.2
~a~b| 0.6 | ~b~c | 0.8

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 26 @ WATERLOO

VE: No Evidence (Example 2)

f1(A) @
~ ,< : >
2®) (B) ‘ 9 3.0) f(C.D)

P(D) =Zs5c P(D|C) P(C|B,A) P(B) P(A)
- 3. P(D|C) 5 P(B) =, P(C|B,A) P(A)
= >:1,(C,D) = 1.(B) =, 1,(A,B,C) f.(A)
= 2 f4(C7D) 2p fz(B) f5(BaC)
= 2¢ f4(C7D) f6(C)
= f7(D)

Define new factors: f5(B,C), f6(C), {-(D), in the obvious way

C5436/686 Winier 2026 - Lcture - sl Poupar . 2 WATERLOO

Variable Elimination: One View

= One way to think of variable elimination:

= write out desired computation using the chain rule, exploiting the
independence relations in the network

= arrange the terms in a convenient fashion

= distribute each sum (over each variable) in as far as it will go

= i.e., the sum over variable X can be “pushed in” as far as the “first” factor
mentioning X

= apply operations “inside out”, repeatedly eliminating and creating new
factors (note that each step/removal of a sum eliminates one variable)

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 28 @ WATERLOO

Variable Elimination Algorithm

= Given query var QQ, remaining vars Z. Let F be the set of factors
corresponding to CPTs for {Q} U Z.

1. Choose an elimination ordering Z1, ..., Z of variables in Z.
2. For each Z; --in the order given -- eliminate Zj e Z
as follows:

(a) Compute new factor gj=2zf1 xfa x ... x fx,

where the fj are the factors in F that include Z;
(b) Remove the factors fj (that mention Zj) from F
and add new factor gj to F
3. The remaining factors refer only to the query variable Q.
Take their product and normalize to produce P(Q)

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 29 @ WATERLOO

VE: Example 2 again
Factors: f;(A) f-(B) f1(A) @

f3(A,B,C) £4(C,D) \@4-@
Query: P(D)? fZ(B)‘ £3(A.B.C) f4(C,D)
Elim. Order: A, B, C

Step 1: Add £5(B,C) = 24 f5(A,B,C) f,(A)
Remove: 1,(A), £5(A,B,C)
Step 2: Add {4(C)= Zz f-(B) 15(B,C)
Remove: 1,(B) , f-(B,C)
Step 3: Add £,(D) = 2 1,(C,D) f¢(C)
Remove: 1,(C,D), £5(C)
Last factor f,(D) is (possibly unnormalized) probability P(D)

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE 30 @ WATERLOO

