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§ Graphical representation of the 
direct dependencies over a set of 
variables + a set of conditional 
probability tables (CPTs) 
quantifying the strength of those 
influences.

§ A BN over variables 𝑋1, 𝑋2, … , 𝑋𝑛 	
consists of:
§ a DAG whose nodes are the variables
§ a set of CPTs (Pr(𝑋𝑖	|	𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)	) for each  𝑋𝑖 

Bayesian Networks (BN)

CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE  2



§ Also known as
§ Belief networks
§ Probabilistic networks

§ Key notions 
§ parents of a node: 𝑃𝑎𝑟(𝑋𝑖) 
§ children of node
§ descendants of a node
§ ancestors of a node
§ family: set of nodes consisting of 𝑋𝑖 and its parents

§ CPTs are defined over families in the BN 

A

C

B

𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝐶) = {𝐴, 𝐵} 
𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝐴) = {𝐶} 
𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑒𝑛𝑡𝑠(𝐵) = {𝐶, 𝐷} 
𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠{𝐷} = {𝐴, 𝐵, 𝐶} 
𝐹𝑎𝑚𝑖𝑙𝑦{𝐶} = {𝐶, 𝐴, 𝐵} 

D

Bayesian Networks
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§ A few CPTs are “shown”

§ Explicit joint requires 200 	− 1 
= 2047	parameters

§ BN requires only 27 params 
(the number of entries for 
each CPT is listed)

An Example Bayes Net
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Semantics of a Bayes Net

§ The structure of the BN means: every 𝑋𝑖 is 
conditionally independent of all of its 
non-descendants given its parents:

   Pr(𝑋𝑖	|	𝑆	 ∪ 	𝑃𝑎𝑟(𝑋𝑖)) 	= 	Pr(𝑋𝑖	|	𝑃𝑎𝑟(𝑋𝑖))
 

for any subset 𝑆 ⊆ 𝑁𝑜𝑛𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠(𝑋𝑖)
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§ If we ask for Pr(𝑥1, 𝑥2, … , 𝑥𝑛)
§ assuming an ordering consistent with the network 

§ By the chain rule, we have: 
   Pr 𝑥1, 𝑥2, … , 𝑥𝑛

= Pr(𝑥1|𝑥120, … , 𝑥0)	Pr(𝑥120|𝑥123, … , 𝑥0)…Pr(𝑥0)
= Pr(𝑥1|𝑃𝑎𝑟(𝑥1))	Pr(𝑥120|𝑃𝑎𝑟(𝑥120))… 	Pr(𝑥0)

§ Thus, the joint is recoverable using the parameters (CPTs) 
specified in an arbitrary BN

Semantics of Bayes Nets
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§ Given any distribution over variables 𝑋0, 𝑋3, … , 𝑋1, we can construct 
a Bayes net that faithfully represents that distribution.

Take any ordering of the variables (say, the order given), and go through the 
following procedure for 𝑋𝑛 down to 𝑋1. 
• Let 𝑃𝑎𝑟(𝑋!) be any subset 𝑆 ⊆ {𝑋", … , 𝑋!#"}	such that 𝑋𝑛 is independent of 
{𝑋", … , 𝑋!#"} 	− 	𝑆	given 𝑆. Such a subset must exist (convince yourself). 

• Then determine the parents of 𝑋!#" in the same way, finding a similar 𝑆 ⊆
{𝑋", … , 𝑋!#$}, and so on. 

In the end, a DAG is produced and the BN semantics must hold by construction.

Constructing a Bayes Net
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§ The construction of a BN is simple
§ works with arbitrary orderings of variable set
§ but some orderings are much better than others!
§ generally, if ordering/dependence structure reflects causal 

intuitions, a more natural, compact BN results

§ In this BN, we used the ordering 
Mal, Cold, Flu, Aches to build BN 
for joint distribution P
§ Variable can only have parents that 

come earlier in the ordering

Causal Intuitions
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§ Suppose we build the BN for distribution P using the opposite ordering
§ i.e., we use ordering Aches, Cold, Flu, Malaria
§ resulting network is more complicated!

§ Mal depends on Aches; but it also 
depends on Cold, Flu given Aches
§ Cold, Flu explain away Mal given Aches

§ Flu depends on Aches; but also on 
Cold given Aches

§ Cold depends on Aches

Causal Intuitions
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Compactness

1+1+1+8=11 numbers 1+2+4+8=15 numbers

In general, if each random variable is directly influenced by at most k others, 
then each CPT will be at most 2𝑘. Thus, the entire network of 𝑛 variables is 
specified by 𝑛2𝑘.
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§ Given BN, how do we determine if two variables 𝑋, 𝑌 are 
independent (given evidence 𝐸)?
§ we use a (simple) graphical property

§ D-separation: A set of variables 𝑬 d-separates 𝑋 and 𝑌 if it 
blocks every undirected path in the BN between 𝑋 and 𝑌.

§  𝑋 and 𝑌 are conditionally independent given evidence 𝑬  if  𝑬  
d-separates 𝑋 and 𝑌
§ Thus, BN gives us an easy way to tell if two variables are independent 

(set 𝐸	 = 	∅) or cond. independent

Testing Independence
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Blocking: Graphical View
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§ Let 𝑃 be an undirected path from 𝑋 to 𝑌 in a BN. Let 𝑬 be an 
evidence set. We say 𝑬 blocks path 𝑃 iff there is some node 𝑍 on 
the path such that:

§ Case 1: one arc on 𝑃 goes into 𝑍 and one goes out of 𝑍, and 𝑍 ∈ 𝑬; or

§ Case 2: both arcs on 𝑃 leave 𝑍, and 𝑍 ∈ 𝑬; or

§ Case 3: both arcs on 𝑃 enter 𝑍 and neither 𝑍, nor any of its 
descendants, are in 𝑬.

Blocking in D-Separation
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1. Subway and 
Thermometer?

2. Aches and Fever?

3. Aches and 
Thermometer?

4. Flu and Malaria?

5. Subway and 
ExoticTrip?

D-Separation: Intuitions
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D-Separation: Intuitions
§ Subway and Thermometer are dependent; but are independent given Flu (since 

Flu blocks the only path)

§ Aches and Fever are dependent; but are independent given Flu (since Flu blocks 
the only path). Similarly for Aches and Thermometer (dependent, but 
independent given Flu).

§ Flu and Mal are independent (given no evidence): Fever blocks the path, since it 
is not in evidence, nor is its descendant Thermometer.  Flu, Malaria are 
dependent given Fever (or given Thermometer): nothing blocks path now.

§ Subway, ExoticTrip are independent; they are dependent given Thermometer; 
they are independent given Thermometer and Malaria. This for exactly the same 
reasons for Flu/Malaria above.

CS486/686 Winter 2026 - Lecture 6 - Pascal Poupart PAGE  15



Inference in Bayes Nets
§ The independence sanctioned by D-separation (and other methods)  

allows us to compute prior and posterior probabilities quite effectively.

§ We'll look at a few simple examples to illustrate. We'll focus on 
networks without loops. (A loop is a cycle in the underlying undirected 
graph. Recall the directed graph has no cycles.)
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§ Computing marginal requires simple forward “propagation” of 
probabilities  

Note: all (final) terms are CPTs in the BN
Note: only ancestors of J considered

P(J)=SM,ET P(J,M,ET)
(marginalization)

P(J)=SM,ET P(J|M)P(M|ET)P(ET)
(conditional independence)

P(J)=SMP(J|M)SETP(M|ET)P(ET)
(distribution of sum)

P(J)=SM,ET P(J|M,ET)P(M|ET)P(ET)
(chain rule)

Simple Forward Inference (Chain)
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§ Same idea applies when we have “upstream” evidence

(chain rule)

P(J|ET) = SMP(J,M|ET)
(marginalisation)

P(J|ET) = SMP(J|M,ET) P(M|ET)

P(J|ET) = SMP(J|M) P(M|ET)
(conditional independence)

Simple Forward Inference (Chain)
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§ When evidence is downstream of query variable, we must reason 
“backwards.” This requires the use of Bayes rule:

    P(ET | j) = α P(j | ET) P(ET)

                 = α ΣM P(j,M|ET) P(ET)

                 = α ΣM P(j|M,ET) P(M|ET) P(ET)

                    = α ΣM P(j|M) P(M|ET) P(ET)

§ First step is just Bayes rule
§ normalizing constant α is 1/P(j); but we needn’t compute it explicitly if we 

compute P(ET | j) for each value of ET: we just add up terms P(j | ET) P(ET) 
for all values of ET (they sum to P(j))

Simple Backward Inference
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§ The intuitions in the above examples give us a simple inference algorithm for 
networks without loops: the polytree algorithm. 

§ Instead, we'll look at a more general algorithm that works for general BNs; but 
the polytree algorithm will be a special case.

§ The algorithm, variable elimination, simply applies the summing out rule 
repeatedly. 
§ To keep computation simple, it exploits the independence in the network and the ability to 

distribute sums inward

Variable Elimination
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§ A function f(X1, X2,…, Xk) is also called a factor. We can view this as a 
table of numbers, one for each instantiation of the variables X1, X2,…, Xk. 
§ A tabular representation of a factor is exponential in k

§ Each CPT in a Bayes net is a factor:
§ e.g., Pr(C|A,B) is a function of three variables, A, B, C

§ Notation: f(X,Y) denotes a factor over the variables X ∪ Y. (Here X, Y are 
sets of variables.)

Factors
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§ Let f(X,Y) & g(Y,Z) be two factors with variables Y in common

§ The product of f and g, denoted h = f x g  (or sometimes just h = fg), is defined:

h(X,Y,Z) = f(X,Y) x g(Y,Z)

f(A,B) g(B,C) h(A,B,C)
ab 0.9 bc 0.7 abc 0.63 ab~c 0.27

a~b 0.1 b~c 0.3 a~bc 0.02 a~b~c 0.08
~ab 0.4 ~bc 0.2 ~abc 0.28 ~ab~c 0.12

~a~b 0.6 ~b~c 0.8 ~a~bc 0.12 ~a~b~c 0.48

The Product of Two Factors
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§ Let f(X,Y) be a factor with variable X  (Y is a set)

§ We sum out variable X from  f  to produce a new factor h = ΣX f,  

which is defined:             h(Y) = Σx∊Dom(X) f(x,Y)

f(A,B) h(B)
ab 0.9 b 1.3

a~b 0.1 ~b 0.7
~ab 0.4

~a~b 0.6

Summing a Variable Out of a Factor
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§ Let f(X,Y) be a factor with variable X  (Y is a set)

§ We restrict factor  f  to X=x by setting X to the value  x  and “deleting”. 
Define  h = fX=x  as:  h(Y) = f(x,Y)

f(A,B) h(B) = fA=a
ab 0.9 b 0.9

a~b 0.1 ~b 0.1
~ab 0.4

~a~b 0.6

Restricting a Factor
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§ Computing prior probability of query var  X  can be seen as applying 
these operations on factors

§ P(C) = ΣA,B P(C|B) P(B|A) P(A)

            = ΣB P(C|B) ΣA P(B|A) P(A)

            = ΣB f3(B,C) ΣA f2(A,B) f1(A) 

            = ΣB f3(B,C) f4(B) = f5(C)

Define new factors: f4(B)= ΣA f2(A,B) f1(A) and  f5(C)= ΣB f3(B,C) f4(B)

B CA
f1(A) f2(A,B) f3(B,C)
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Variable Elimination: No Evidence
§ Here’s the example with some numbers

B CA
f1(A) f2(A,B) f3(B,C)

f1(A) f2(A,B) f3(B,C) f4(B) f5(C)
a 0.9 ab 0.9 bc 0.7 b 0.85 c 0.625

~a 0.1 a~b 0.1 b~c 0.3 ~b 0.15 ~c 0.375
~ab 0.4 ~bc 0.2

~a~b 0.6 ~b~c 0.8
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P(D) = ΣA,B,C P(D|C) P(C|B,A) P(B) P(A)
         = ΣC P(D|C) ΣB P(B) ΣA P(C|B,A) P(A)
         = ΣC f4(C,D) ΣB f2(B) ΣA f3(A,B,C) f1(A) 
         = ΣC f4(C,D) ΣB f2(B) f5(B,C)
         = ΣC f4(C,D) f6(C)
         = f7(D)
Define new factors: f5(B,C), f6(C), f7(D), in the obvious way

C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)

VE: No Evidence (Example 2)



§ One way to think of variable elimination:
§ write out desired computation using the chain rule, exploiting the 

independence relations in the network
§ arrange the terms in a convenient fashion

§ distribute each sum (over each variable) in as far as it will go
§ i.e., the sum over variable X can be “pushed in” as far as the “first” factor 

mentioning X

§ apply operations “inside out”, repeatedly eliminating and creating new 
factors (note that each step/removal of a sum eliminates one variable)

Variable Elimination: One View
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Variable Elimination Algorithm
§ Given query var Q, remaining vars Z. Let F be the set of factors 

corresponding to CPTs for {Q} ∪ Z.
1. Choose an elimination ordering Z1, …, Zn of variables in Z.
2. For each Zj   -- in the order given --  eliminate Zj ∊ Z 
    as follows:
 (a)  Compute new factor  gj = ΣZj f1 x f2 x … x fk,  
                  where the fi are the factors in F that include Zj   
 (b) Remove the factors  fi   (that mention Zj ) from F 
                 and add new factor  gj   to  F
3. The remaining factors refer only to the query variable Q. 
    Take their product and normalize to produce P(Q)
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Step 1: Add f5(B,C) = ΣA f3(A,B,C) f1(A) 
             Remove: f1(A), f3(A,B,C) 
Step 2: Add f6(C)= ΣB f2(B) f5(B,C)
             Remove: f2(B) , f5(B,C) 
Step 3: Add f7(D) = ΣC f4(C,D) f6(C) 
              Remove: f4(C,D), f6(C) 
Last factor f7(D) is (possibly unnormalized) probability P(D)

Factors: f1(A) f2(B) 
f3(A,B,C) f4(C,D) 

Query: P(D)?  
Elim. Order: A, B, C

C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)

VE: Example 2 again
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