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Outline

§ Probability theory

§ Uncertainty via probabilities

§ Probabilistic inference
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Terminology

§ Probability distribution:
§ A specification of a probability for each event in our sample space

§ Probabilities must sum to 1

§ Assume the world is described by two (or more) random variables
§ Joint probability distribution 

§ Specification of probabilities for all combinations of events
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Joint distribution 

§ Given two random variables 𝐴 and 𝐵:
§ Joint distribution: 

    Pr(𝐴 = 𝑎	Λ	𝐵 = 𝑏) for all 𝑎, 𝑏

§ Marginalisation (sumout rule):
    Pr(𝐴 = 𝑎) 	= 	Σ𝑏	Pr(𝐴 = 𝑎	Λ	𝐵 = 𝑏)

    Pr(𝐵 = 𝑏) 	= 	Σ𝑎	Pr(𝐴 = 𝑎	Λ	𝐵 = 𝑏)
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cold ~cold

headache 0.108 0.012

~headache 0.016 0.064

cold ~cold

headache 0.072 0.008

~headache 0.144 0.576

sunny ~sunny

P(headache Λ sunny Λ cold) =            

P(~headache Λ sunny Λ ~cold) = 

P(headache) =

marginalization

Example: Joint Distribution
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Conditional Probability
§ Pr(𝐴|𝐵): fraction of worlds in which 𝐵 is true that also have 𝐴 true

H

F
H = “Have headache”
F = “Have Flu”

Pr(𝐻) = 1/10
Pr(𝐹) = 1/40
Pr(𝐻|𝐹) = 1/2

Headaches are rare and flu is 
rarer, but if you have the flu, then 
there is a 50-50 chance you will 
have a headache
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Conditional Probability

H

F H = “Have headache”
F = “Have Flu”

Pr(𝐻) = 1/10
Pr(𝐹) = 1/40
Pr(𝐻|𝐹) = 1/2

Pr(𝐻|𝐹) = Fraction of flu inflicted worlds in which you have a headache
               = (# worlds with flu and headache)/(# worlds with flu)
               = (Area of “H and F” region)/(Area of “F” region)
               = Pr 𝐻	Λ	𝐹 /	Pr(𝐹)
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Conditional Probability

§ Definition: Pr(𝐴|𝐵) 	= 	Pr(𝐴	Λ	𝐵)	/	Pr(𝐵)

§ Chain rule: Pr(𝐴	Λ	𝐵) 	= 	Pr(𝐴|𝐵)	Pr(𝐵)

Memorize these rules!
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Inference

H

F H = “Have headache”
F = “Have Flu”

 Pr(𝐻) = 1/10
 Pr(𝐹) = 1/40
 Pr(𝐻|𝐹) = 1/2

One day you wake up with a 
headache.  You think “Drat! 50% of 
flues are associated with headaches so 
I must have a 50-50 chance of coming 
down with the flu”

Is your reasoning correct?

Pr(𝐹Λ𝐻) =

 Pr 𝐹 𝐻 =
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cold ~cold

headache 0.108 0.012

~headache 0.016 0.064

cold ~cold

headache 0.072 0.008

~headache 0.144 0.576

sunny ~sunny

Pr(ℎ𝑒𝑎𝑑𝑎𝑐ℎ𝑒	Λ	𝑐𝑜𝑙𝑑	|	𝑠𝑢𝑛𝑛𝑦) 	=

Pr(ℎ𝑒𝑎𝑑𝑎𝑐ℎ𝑒	Λ	𝑐𝑜𝑙𝑑	|	~𝑠𝑢𝑛𝑛𝑦) 	=

Example: Conditional Distribution
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Bayes Rule

§ Note: Pr(𝐴|𝐵)Pr(𝐵) 	= 	Pr(𝐴Λ𝐵) 	= 	Pr(𝐵Λ𝐴) = Pr(𝐵|𝐴)𝑃𝑟(𝐴)

§ Bayes Rule:     Pr 𝐵 𝐴 = <=(>|?)<=(@)
<= A

Memorize this!
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§ Often, we want to form a hypothesis about the world based on what 
we have observed

§ Bayes’ rule allows us to compute a belief about hypothesis 𝐻, given 
evidence 𝑒

Posterior probability

Prior probabilityLikelihood

Normalizing constant

Using Bayes’ Rule for inference

CS486/686 Winter 2026 - Lecture 5 - Pascal Poupart PAGE  12



CS486/686 Winter 2026 - Lecture 5 - Pascal Poupart 13

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃 𝐴

𝑃 𝐵 𝐴 𝑃 𝐴 + 𝑃 𝐵 ~𝐴 𝑃 ~𝐴

𝑃 𝐴 𝐵 ∧ 𝑋 =
𝑃 𝐵 𝐴 ∧ 𝑋 𝑃 𝐴|𝑋

𝑃 𝐵|𝑋

𝑃 𝐴 = 𝑣B 𝐵 =
𝑃 𝐵 𝐴 = 𝑣B 𝑃 𝐴 = 𝑣B

∑CDEF 𝑃 𝐵 𝐴 = 𝑣C 𝑃 𝐴 = 𝑣C

More General Forms of Bayes Rule
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§ By probabilistic inference, we mean
§  given a prior distribution Pr(𝑿) over variables 𝑿 of interest, representing 

degrees of belief
§ and given new evidence 𝐸 = 𝑒 for some variable 𝐸

§ Revise your degrees of belief: posterior  Pr(𝑿|𝐸 = 𝑒)

§ Applications:
§ Medicine: Pr 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑠𝑦𝑚𝑝𝑡𝑜𝑚1, 𝑠𝑦𝑚𝑝𝑡𝑜𝑚2,… , 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑁
§ Troubleshooting: Pr(𝑐𝑎𝑢𝑠𝑒|𝑡𝑒𝑠𝑡1, 𝑡𝑒𝑠𝑡2, … , 𝑡𝑒𝑠𝑡𝑁)
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Probabilistic Inference
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§ How do we specify the full joint distribution over a set of random 
variables 𝑋!, 𝑋", … , 𝑋# 	?
§ Exponential number of possible worlds

§ e.g., if 𝑋# is Boolean, then 2$ numbers (or 2$ − 1 parameters, since they sum to 1)

§ These numbers are not robust/stable

§ Inference is frightfully slow
§ Must sum over exponential number of worlds to answer queries

§ Pr 𝑋" = ∑#!…∑#"#!	∑#"$!…∑#% Pr(𝑋$, 𝑋%, … , 𝑋&) 

§ 𝑃𝑟 𝑋$, … , 𝑋"'$, 𝑋"($, … , 𝑋& 𝑋" = ) #!,…,#%
) #"

= ) ,!,…,#%
∑&!…∑&"#!	 ∑&"$!…∑&% ./ #!,…,#%
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Issues
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cold ~cold

headache 0.108 0.012

~headache 0.016 0.064

cold ~cold

headache 0.072 0.008

~headache 0.144 0.576

sunny ~sunny

Pr(ℎ𝑒𝑎𝑑𝑎𝑐ℎ𝑒 ∧ 𝑐𝑜𝑙𝑑|𝑠𝑢𝑛𝑛𝑦) = Pr ℎ𝑒𝑎𝑑𝑎𝑐ℎ𝑒 ∧ 𝑐𝑜𝑙𝑑 ∧ 𝑠𝑢𝑛𝑛𝑦 / Pr(𝑠𝑢𝑛𝑛𝑦) 

                  = 	0.108/(0.108 + 0.012 + 0.016 + 0.064) = 0.54
Pr(ℎ𝑒𝑎𝑑𝑎𝑐ℎ𝑒 ∧ 𝑐𝑜𝑙𝑑|~𝑠𝑢𝑛𝑛𝑦) = Pr ℎ𝑒𝑎𝑑𝑎𝑐ℎ𝑒 ∧ 𝑐𝑜𝑙𝑑 ∧ ~𝑠𝑢𝑛𝑛𝑦 /Pr(~𝑠𝑢𝑛𝑛𝑦)

                   = 	0.072/(0.072 + 0.008 + 0.144 + 0.576) = 0.09

Pr(ℎ𝑒𝑎𝑑𝑎𝑐ℎ𝑒) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2
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Small Example: 3 Variables
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§ How do we avoid the exponential blow up of joint distribution 
and probabilistic inference?
§ no solution in general

§ but in practice there is structure we can exploit

§ We’ll use conditional independence

17

Intractable Inference
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§ Recall that 𝑋 and 𝑌 are independent iff:
Pr 𝑋 = 𝑥 = Pr 𝑋 = 𝑥 𝑌 = 𝑦
⇔ Pr 𝑌 = 𝑦 = Pr 𝑌 = 𝑦 𝑋 = 𝑥
⇔ Pr 𝑋 = 𝑥, 𝑌 = 𝑦 = Pr 𝑋 = 𝑥 Pr 𝑌 = 𝑦
∀𝑥 ∈ 𝑑𝑜𝑚 𝑋 , 𝑦 ∈ 𝑑𝑜𝑚(𝑌)

§ Intuitively, learning the value of 𝑌 doesn’t influence our  
beliefs about 𝑋 and vice versa.

§ Example: Pr 𝑆𝑢𝑛𝑛𝑦|𝑇𝑜𝑜𝑡ℎ𝐶𝑎𝑣𝑖𝑡𝑦 = Pr 𝑆𝑢𝑛𝑛𝑦
                  Pr 𝑇𝑜𝑜𝑡ℎ𝐶𝑎𝑣𝑖𝑡𝑦 𝑆𝑢𝑛𝑛𝑦 = Pr(𝑇𝑜𝑜𝑡ℎ𝐶𝑎𝑣𝑖𝑡𝑦)
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Independence



CS486/686 Winter 2026 - Lecture 5 - Pascal Poupart

§ Two variables 𝑋 and 𝑌 are conditionally independent given variable 𝑍 
Pr 𝑋 = 𝑥|𝑍 = 𝑧 = Pr 𝑋 = 𝑥 𝑌 = 𝑦, 𝑍 = 𝑧
⇔ Pr 𝑌 = 𝑦|𝑍 = 𝑧 = Pr 𝑌 = 𝑦 𝑋 = 𝑥, 𝑍 = 𝑧
⇔ Pr 𝑋 = 𝑥, 𝑌 = 𝑦|𝑍 = 𝑧 = Pr 𝑋 = 𝑥|𝑍 = 𝑧 Pr 𝑌 = 𝑦|𝑍 = 𝑧
∀𝑥 ∈ 𝑑𝑜𝑚 𝑋 , 𝑦 ∈ 𝑑𝑜𝑚 𝑌 , 𝑧 ∈ 𝑑𝑜𝑚(𝑍)

§ If you know the value of 𝑍 (whatever it is), nothing you learn about 𝑌 
will influence your beliefs about 𝑋

§ Example: Pr 𝑇𝑜𝑜𝑡ℎ𝐴𝑐ℎ𝑒 𝑇𝑜𝑜𝑡ℎ𝐶𝑎𝑣𝑖𝑡𝑦, 𝑇𝑜𝑜𝑡ℎ𝐶𝑎𝑡𝑐ℎ = Pr 𝑇𝑜𝑜𝑡ℎ𝐴𝑐ℎ𝑒 𝑇𝑜𝑜𝑡ℎ𝐶𝑎𝑣𝑖𝑡𝑦
                  Pr 𝑇𝑜𝑜𝑡ℎ𝐶𝑎𝑡𝑐ℎ 𝑇𝑜𝑜𝑡ℎ𝐶𝑎𝑣𝑖𝑡𝑦, 𝑇𝑜𝑜𝑡ℎ𝐴𝑐ℎ𝑒 = Pr(𝑇𝑜𝑜𝑡ℎ𝐶𝑎𝑡𝑐ℎ|𝑇𝑜𝑜𝑡ℎ𝐶𝑎𝑣𝑖𝑡𝑦)
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Conditional Independence
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§ Suppose (say, Boolean) variables 𝑋1, 𝑋2, … , 𝑋𝑛	are mutually 
independent
§ We can specify full joint distribution using only n parameters 

(linear) instead of 2" − 1	(exponential)

§ How? Simply specify Pr 𝑥1 , … , Pr(𝑥𝑛)
§ From this we can recover the probability of any world 

or any (conjunctive) query easily
§ Recall Pr(𝑥$, … , 𝑥&) = Pr(𝑥$)…Pr(𝑥&) 

20

What good is independence?
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§ 4 independent Boolean random vars 𝑋1, 𝑋2, 𝑋3, 𝑋4

Pr(𝑥1) = 0.4, Pr(𝑥2) = 0.2, Pr(𝑥3) = 0.5, Pr(𝑥4) = 0.8

Pr(𝑥E, ~𝑥\, 𝑥], 𝑥^) = Pr 𝑥E 1 − Pr 𝑥\ Pr(𝑥]) Pr(𝑥^)
                            =	 (0.4)(0.8)(0.5)(0.8)
                            = 	0.128

Pr(𝑥E, 𝑥\, 𝑥]|𝑥^) = Pr(𝑥E) Pr(𝑥\) Pr(𝑥]) 𝟏
                            = (0.4)(0.2)(0.5)(1)
                            = 0.04

21

Example
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§ Complete independence reduces both representation of joint 
distribution and inference from 𝑂(2F) to 𝑂(𝑛)!!

§ Unfortunately, such complete mutual independence is very 
rare. Most realistic domains do not exhibit this property.

§ Fortunately, most domains do exhibit a fair amount of 
conditional independence. We can exploit conditional 
independence for representation and inference as well.

§ Bayesian networks do just this

22

The Value of Independence
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§ Pr(𝑋) for variable 𝑋 (or set of variables) refers to the (marginal) distribution 
over 𝑋. Pr(𝑋|𝑌) refers to the family of conditional distributions over 𝑋, one for 
each 𝑦 ∈ 𝐷𝑜𝑚(𝑌).

§ Distinguish between Pr(𝑋) -- which is a distribution – and Pr(𝑥) or Pr(~𝑥)	(or 
Pr(𝑥𝑖) for non-Boolean vars) -- which are numbers. Think of Pr(𝑋) as a 
function that accepts any 𝑥# ∈ 𝐷𝑜𝑚(𝑋)	as an argument and returns Pr(𝑥𝑖).

§ Think of Pr(𝑋|𝑌) as a function that accepts any 𝑥𝑖 and 𝑦𝑘 and returns 
Pr(𝑥𝑖|𝑦𝑘). Note that Pr(𝑋|𝑌) is not a single distribution; rather it denotes the 
family of distributions (over 𝑋) induced by the different 𝑦$ ∈ 𝐷𝑜𝑚(𝑌)
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An Aside on Notation
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§ Consider a story:
§ If Pascal woke up too early 𝐸, Pascal probably needs coffee 𝐶; if 

Pascal needs coffee, he's likely grumpy 𝐺. If he is grumpy then it’s 
possible that the lecture won’t go smoothly 𝐿. If the lecture does not 
go smoothly then the students will likely be sad 𝑆. 

E C L SG

E – Pascal woke up too early    G – Pascal is grumpy   S – Students are sad
                 C – Pascal needs coffee     L– The lecture did not go smoothly

24

Exploiting Conditional Independence
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§ If you learned any of 𝐸, 𝐶, 𝐺, or 𝐿, would your assessment of Pr(𝑆) change? 
§ If any of these are seen to be true, you would increase Pr(𝑠) and decrease Pr(~𝑠). 
§ So 𝑆 is not independent of 𝐸, or 𝐶, or 𝐺, or 𝐿.

§ If you knew the value of 𝐿 (true or false), would learning the value of 𝐸, 𝐶, 
or 𝐺 influence Pr(𝑆)?
§ Influence that these factors have on 𝑆 is mediated by their influence on 𝐿.
§ Students aren’t sad because Pascal was grumpy, they are sad because of the lecture. 
§ So 𝑆 is independent of 𝐸, 𝐶, and 𝐺, given  𝐿

E C L SG

25

Conditional Independence
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§ So 𝑆 is independent of 𝐸, and 𝐶, and 𝐺, given 𝐿
§ Similarly:

§ 𝑆 is independent of 𝐸, and 𝐶, given 𝐺
§ 𝐺	 is independent of 𝐸, given 𝐶

§ This means that:
 Pr(𝑆|𝐿, {𝐺, 𝐶, 𝐸}) 	 = 	 Pr(𝑆|𝐿)

 Pr(𝐿|𝐺, {𝐶, 𝐸}) 	= 	Pr(𝐿|𝐺)

 Pr(𝐺|𝐶, {𝐸}) 	= 	Pr(𝐺|𝐶)

 Pr(𝐶|𝐸)    and    Pr(𝐸)   don’t “simplify”

E C L SG
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Conditional Independence
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§ By the chain rule (for any instantiation of 𝑆…𝐸):
Pr(𝑆, 𝐿, 𝐺, 𝐶, 𝐸) = Pr(𝑆|𝐿, 𝐺, 𝐶, 𝐸)	Pr(𝐿|𝐺, 𝐶, 𝐸)	Pr(𝐺|𝐶, 𝐸)	Pr(𝐶|𝐸)	Pr(𝐸)

§ By our independence assumptions:
Pr(𝑆, 𝐿, 𝐺, 𝐶, 𝐸) = Pr(𝑆|𝐿)	Pr(𝐿|𝐺)	Pr(𝐺|𝐶)	Pr(𝐶|𝐸)	Pr(𝐸)

§ We can specify the full joint by specifying five local conditional 
distributions: 
Pr(𝑆|𝐿); Pr(𝐿|𝐺); Pr(𝐺|𝐶); Pr(𝐶|𝐸); and Pr(𝐸) 

E C L SG
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Conditional Independence
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§ Specifying the joint requires only 9 parameters (if we note that half of these are 
“1 minus” the others), instead of 31 for the explicit representation
§ linear in number of variables instead of exponential!

§ linear generally if dependence has a chain structure

E C L SG

Pr(𝒄|𝒆) = 𝟎. 𝟗 
Pr(~𝑐|𝑒) = 0.1 
Pr(𝒄|~𝒆) = 𝟎. 𝟓 
Pr(~𝑐|~𝑒) = 0.5 

Pr(𝒆) = 𝟎. 𝟕 
Pr(~𝑒) = 0.3 

Pr(𝒈|𝒄) = 𝟎. 𝟑 
Pr(~𝑔|𝑐) = 0.7 
Pr(𝒈|~𝒄) = 𝟏. 𝟎 
Pr(~𝑔|~𝑐) = 0.0 

Pr(𝒔|𝒍) = 𝟎. 𝟗 
Pr(~𝑠|𝑙) = 0.1 
Pr(𝒔|~𝒍) = 𝟎. 𝟏 
Pr(~𝑠|~𝑙) = 0.9 

Pr(𝒍|𝒈) = 𝟎. 𝟐 
Pr ~𝑙 𝑔 = 0.8 
Pr(𝒍|~𝒈) = 𝟎. 𝟏 
Pr(~𝑙|~𝑔) = 0.9 
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Example Quantification
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§ Want to know Pr(𝑔)? Use sum out rule:

E C L SG

!"#$!%"#$!%"#$

!"#$!%"#$!$

!$!$

!$

!
"#$%

!!
C#$%D

!

!
C#$%D

!

EEDD)
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∑∑

∑
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∈

=
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These are all terms specified in our local distributions!
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Inference is Easy
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Inference is Easy

§ Computing Pr(𝑔) in more concrete terms:

   Pr(𝑐) 	= Pr(𝑐|𝑒) Pr(𝑒) 	+ Pr(𝑐|~𝑒) Pr(~𝑒) = 	0.9	 ∗ 	0.7	 + 	0.5	 ∗ 	0.3	 = 	0.78

Pr(~c) 	= 	Pr(~𝑐|𝑒)Pr(𝑒) 	+ 	Pr(~𝑐|~𝑒)Pr(~𝑒) 	= 	0.22
     Pr(~𝑐) 	= 	1	– 	Pr(𝑐), as well

 Pr(𝑔) 	= 	Pr(𝑔|𝑐)Pr(𝑐) 	+ 	Pr(𝑔|~𝑐)Pr(~𝑐) = 	0.3	 ∗ 	0.78	 + 1.0	 ∗ 	0.22	 = 	0.454

 Pr(~𝑔) 	= 	1	– 	Pr(𝑔) 	= 	0.546 

E C L SG
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