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Outline

= Probability theory
= Uncertainty via probabilities

= Probabilistic inference
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Terminology

= Probability distribution:

= A specification of a probability for each event in our sample space

= Probabilities must sum to 1

= Assume the world is described by two (or more) random variables
= Joint probability distribution

= Specification of probabilities for all combinations of events
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Joint distribution

» Given two random variables A and B:

» Joint distribution:
Pr(A=aAB =>b)foralla,b

= Marginalisation (sumout rule):
Pr(A=a) = £,Pr(A=aAB =0>)
Pr(B=b) = 2,Pr(A=aAB =D))
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Example: Joint Distribution

sunny ~sunny

cold ~cold cold ~cold
headache |0.108 0.012 headache |0.072 0.008
~headache | 0.016 0.064 ~headache | 0.144 0.576

P(headache A sunny A cold) = . | & %
P(~headache A sunny A ~cold) = 0,00 ‘-1

P(headache) = 9,108 ~ 00|12 4+ & oF2 T 008 = ©.°C

\ marginalization
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Conditional Probability

= Pr(4|B): fraction of worlds in which B is true that also have A true

H = “Have headache”
F F = “Have Flu”

Pr(H) = 1/10
Pr(F) = 1/40
Pr(H|F) = 1/2

Headaches are rare and flu is
rarer, but if you have the flu, then
there is a 50-50 chance you will
have a headache

A WATERLOO
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Conditional Probability

- H = “Have headache”
F = “Have Flu”
Pr(H) = 1/10
Pr(F) = 1/40
Pr(H|F) = 1/2

Pr(H|F) = Fraction of flu inflicted worlds in which you have a headache
= (# worlds with flu and headache)/(# worlds with flu)
= (Area of “H and F” region)/(Area of “F” region)
= Pr(HAF) /Pr(F)
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Conditional Probability

= Definition: Pr(A|B) = Pr(AAB) /Pr(B)

= Chainrule: Pr(AAB) = Pr(A|B) Pr(B)

PA(Q('S(C‘) = P(Ptl@‘Q) ;E%‘(i) F(C)

Memorize these rules!
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Inference

One day you wake up with a
headache. You think “Drat! 50% of
flues are associated with headaches so
I must have a 50-50 chance of coming
down with the flu”
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H = “Have headache”
F = “Have Flu”

Pr(H) = 1/10
Pr(F) = 1/40
Pr(H|F) = 1/2

Is your reasoning correct?

pr(FaH) = ((€) P(HF "<sz¥£) >
pr(FlH) = F(F H)— ‘/fo _ /
() Og
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Example: Conditional Distribution

sunny ~sunny

cold ~cold cold ~cold

headache |0.108 0.012 headache |0.072 0.008

~headache | 0.016 0.064 ~headache | 0.144 0.576

PCh c s) O, 0%
Pr(headache A cold | sunny) = (<21 = — ~=0, S“(
Pg) OIOBOAL +E S|+ OLY

Pr(headache A cold | ~sunny) = Pa\ CI’US) OO}Z 001

P(~s) 0,0+ 0.ETBEOINY 57
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Bayes Rule

= Note: Pr(A|B)Pr(B) = Pr(AAB) = Pr(BAA) = Pr(B|A)Pr(A)

Pr(A|B)Pr(B)

Memorize this!
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Using Bayes’ Rule for inference

= Often, we want to form a hypothesis about the world based on what
we have observed

= Bayes’ rule allows us to compute a belief about hypothesis H, given
evidence e

Likelig‘ Prior probability
P(e|H)P(H) -
P(Hle) =

P(e
, ()\

Posterior probability Normalizing constant
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More General Forms of Bayes Rule

P(B|A)P(A)

P(AlB) — P(BlA)P(A) + P(B|~A)P(~A)

P(B|AAX)P(A|X)
P(B|X)

P(A|IBAX) =

P(B|A =v;)P(A =v;)

P(A =vB) = v=1 P(BIA =v,)P(A = vy)
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e
Probabilistic Inference

= By probabilistic inference, we mean

= given a prior distribution Pr(X) over variables X of interest, representing
degrees of belief

= and given new evidence E = e for some variable E
= Revise your degrees of belief: posterior Pr(X|E = e)
= Applications:
= Medicine: Pr(disease|symptoml, symptom?2, ..., symptomN)

= Troubleshooting: Pr(cause|test1, test2, ..., testN)
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Issues

= How do we specify the full joint distribution over a set of random
variables X{, X5, ..., X, ?

= Exponential number of possible worlds
= e.g., if X; is Boolean, then 2™ numbers (or 2" — 1 parameters, since they sum to 1)

= These numbers are not robust/stable

» Inference is frightfully slow

= Must sum over exponential number of worlds to answer queries

= Pr(X;) = le ---in_l inﬂ ---an Pr(X1, X2, ..., Xn)

P(Xl,...,Xn) — P(xl,...,Xn)
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Small Example: 3 Variables

sunny ~sunny

cold ~cold cold ~cold
headache |0.108 0.012 headache |0.072 0.008
~headache | 0.016 0.064 ~headache | 0.144 0.576

Pr(headache) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2
Pr(headache A cold|sunny) = Pr(headache A cold A sunny) / Pr(sunny)

= 0.108/(0.108 + 0.012 + 0.016 + 0.064) = 0.54
Pr(headache A cold|~sunny) = Pr(headache A cold A ~sunny) / Pr(~sunny)

= 0.072/(0.072 + 0.008 + 0.144 + 0.576) = 0.09
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Intractable Inference

= How do we avoid the exponential blow up of joint distribution
and probabilistic inference?

= no solution in general
= but in practice there is structure we can exploit

= We'll use conditional independence
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Independence

= Recall that X and Y are independent iff:

PriX=x)=Pr(X =x|Y =vy)

S Pr(Y =y) =Pr(Y =y|X =x)
SPriX=x,Y=y)=PrX=x)Pr(Y =y)
Vx € dom(X),y € dom(Y)

= Intuitively, learning the value of Y doesn’t influence our
beliefs about X and vice versa.

= Example: Pr(Sunny|ToothCavity) = Pr(Sunny)
Pr(ToothCavity|Sunny) = Pr(ToothCavity)
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Conditional Independence

= Two variables X and Y are conditionally independent given variable Z
PriX=x|Z=2z)=PrX=x|Y =y,Z = 2)
SPrY=y|Z=2)=Pr(Y=y|X=x,Z =2)
SPriX=xY=y|Z=2)=PrX=x|Z=2)Pr(Y =y|Z = z)

Vx € dom(X),y € dom(Y),z € dom(Z)

= If you know the value of Z (whatever it is), nothing you learn about Y
will influence your beliefs about X

u Example: Pr(ToothAche|ToothCavity, ToothCatch) = Pr(ToothAche|ToothCavity)
Pr(ToothCatch|ToothCavity, ToothAche) = Pr(ToothCatch|ToothCavity)
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What good is independence?

= Suppose (say, Boolean) variables X, X, ..., X, are mutually
independent

= We can specify full joint distribution using only n parameters
(linear) instead of 2™ — 1 (exponential)

 How? Simply specify Pr(x,), ..., Pr(x,)

= From this we can recover the probability of any world
or any (conjunctive) query easily

= Recall Pr(x4, ..., x;;) = Pr(x;) ... Pr(x;,)
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Example
= 4 independent Boolean random vars X, X,, X5, X,

Pr(x;) = 0.4,Pr(x,) = 0.2, Pr(x3) = 0.5, Pr(x,) = 0.8

Pr(xy, ~x3,x3,x4) = Pr(x;) (1 — Pr(x;)) Pr(x3) Pr(x,)
= (0.4)(0.8)(0.5)(0.8)
= (0.128

Pr(xq, x5, x3|x4) = Pr(x;) Pr(x,) Pr(x;) 1

= (0.4)(0.2)(0.5)(1)
= 0.04

) % WATERLOO

CS486/686 Winter 2026 - Lecture S - Pascal Poupart



The Value of Independence

= Complete independence reduces both representation of joint
distribution and inference from 0(2™) to 0(n)!!

= Unfortunately, such complete mutual independence is very
rare. Most realistic domains do not exhibit this property.

= Fortunately, most domains do exhibit a fair amount of
conditional independence. We can exploit conditional
independence for representation and inference as well.

» Bayesian networks do just this
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An Aside on Notation

= Pr(X) for variable X (or set of variables) refers to the (marginal) distribution
over X. Pr(X|Y) refers to the family of conditional distributions over X, one for
each y € Dom(Y).

= Distinguish between Pr(X) -- which is a distribution — and Pr(x) or Pr(~x) (or
Pr(x;) for non-Boolean vars) -- which are numbers. Think of Pr(X) as a
function that accepts any x; € Dom(X) as an argument and returns Pr(x;).

= Think of Pr(X|Y) as a function that accepts any x; and yy and returns
Pr(x;|yk). Note that Pr(X|Y) is not a single distribution; rather it denotes the
family of distributions (over X) induced by the different y;,, € Dom(Y)
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Exploiting Conditional Independence

= Consider a story:

= If Pascal woke up too early E, Pascal probably needs coffee C; if
Pascal needs coffee, he's likely grumpy G. If he is grumpy then it’s
possible that the lecture won’t go smoothly L. If the lecture does not
go smoothly then the students will likely be sad S.

O—O—E©O—0L—O

E - Pascal woke up too early G - Pascal is grumpy S - Students are sad
C - Pascal needs coffee  L- The lecture did not go smoothly
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Conditional Independence
O—O—E©O—GL—©

= If you learned any of E, C, G, or L, would your assessment of Pr(S) change?
= If any of these are seen to be true, you would increase Pr(s) and decrease Pr(~s).

= So S is not independent of E, or C, or G, or L.

= If you knew the value of L (true or false), would learning the value of E, C,
or G influence Pr(S)?

= Influence that these factors have on S is mediated by their influence on L.
= Students aren’t sad because Pascal was grumpy, they are sad because of the lecture.

= So S is independent of E, C, and G, given L
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Conditional Independence

O—O—O—0L—O

= So S is independent of E, and C, and G, given L
= Similarly:
= Sisindependent of E, and C, given G
= G is independent of E, given C
= This means that:
Pr(S|L,{G,C,E}) = Pr(S|L)
Pr(L|G,{C,E}) = Pr(L|G)
Pr(G|C,{E}) = Pr(G|C)
Pr(C|E) and Pr(E) don’t“simplify”
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Conditional Independence
O—O—EO—OL—E

= By the chain rule (for any instantiation of S ... E):
Pr(S,L,G,C,E) = Pr(S|L, G, C,E) Pr(L|G, C, E) Pr(G|C, E) Pr(C|E) Pr(E)
= By our independence assumptions:
Pr(S,L,G,C,E) = Pr(S|L) Pr(L|G) Pr(G|C) Pr(C|E) Pr(E)

= We can specify the full joint by specitying five local conditional
distributions:

Pr(S|L); Pr(L|G); Pr(G|C); Pr(C|E); and Pr(E)
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Example Quantification

Pr(cle) = 0.9 Pr(llg) = 0.2
Pr(~c|e) = 0.1 Pr(~llg) = 0.8
Pr(c|~e) = 0.5 Pr(l|~g) = 0.1
Pr(~c|~e) = 0.5 Pr(~l|~g) = 0.9

O OO OO,

Pr(e) = 0.7 Pr(g|c) = 0.3 Pr(s|l) = 0.9

Pr(~e) = 0.3 Pr(~g|c) = 0.7 Pr(~s|l) = 0.1
Pr(g|~c) =1.0 Pr(s|~1l) = 0.1
Pr(~g|~c) = 0.0 Pr(~s|~l) = 0.9

= Specifying the joint requires only 9 parameters (if we note that half of these are
“1 minus” the others), instead of 31 for the explicit representation

= linear in number of variables instead of exponential!

= linear generally if dependence has a chain structure
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Inference is Easy
O—O—O—L—O

= Want to know Pr(g)? Use sum out rule:

P(g) = ZPr(g|Ci)Pr(Ci)

¢ eDom(C)

= Y Pr(glc) D Pr(c|e)Pr(e)

¢ eDom(C) l el-eDom(E) l l

These are all terms specified in our local distributions!
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Inference is Easy
O—O—O—L—O

= Computing Pr(g) in more concrete terms:
a4

Pr(c) = Pr(c|e) Pr(e) + Pr(c|~e)Pr(~e) = @** 0.7 + 0.5 = 0.3 = 0.78
Pr(~c) = Pr(~cle)Pr(e) + Pr(~c|~e)Pr(~e) = 0.22

Pr(~c) = 1- Pr(c), as well
Pr(g) = Pr(g|c)Pr(c) + Pr(g|~c)Pr(~c)= 0.3 * 0.78 + 1.0 * 0.22 = 0.454
Pr(~g) = 1- Pr(g) = 0.546
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