

Lecture 5: Uncertainty

CS486/686 Intro to Artificial Intelligence

2026-1-20

Pascal Poupart
David R. Cheriton School of Computer Science

Outline

- Probability theory
- Uncertainty via probabilities
- Probabilistic inference

Terminology

- **Probability distribution:**
 - A specification of a probability for each event in our sample space
 - Probabilities must sum to 1
- Assume the world is described by two (or more) random variables
 - **Joint probability distribution**
 - Specification of probabilities for all combinations of events

Joint distribution

- Given two random variables A and B :
- Joint distribution:

$\Pr(A = a \wedge B = b)$ for all a, b

- **Marginalisation (sumout rule):**

$$\Pr(A = a) = \sum_b \Pr(A = a \wedge B = b)$$

$$\Pr(B = b) = \sum_a \Pr(A = a \wedge B = b)$$

Example: Joint Distribution

sunny		~sunny
	cold	~cold
headache	0.108	0.012
~headache	0.016	0.064

$$P(\text{headache} \wedge \text{sunny} \wedge \text{cold}) = 0.108$$

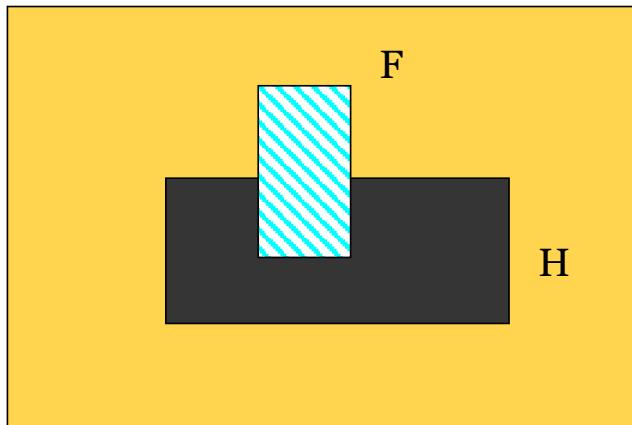
$$P(\text{~headache} \wedge \text{sunny} \wedge \text{~cold}) = 0.064$$

$$P(\text{headache}) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2$$

marginalization

Conditional Probability

- $\Pr(A|B)$: fraction of worlds in which B is true that also have A true

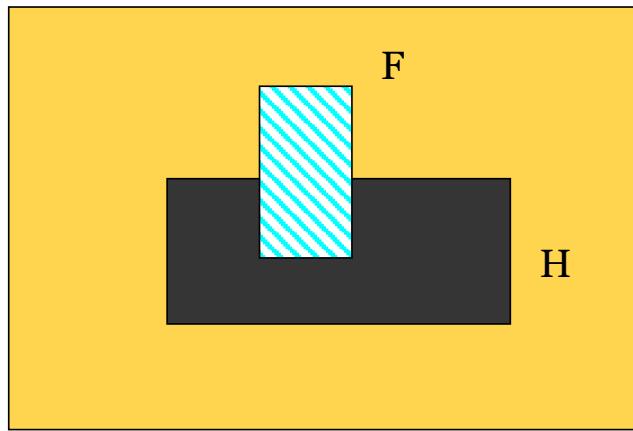


H = “Have headache”
 F = “Have Flu”

$$\begin{aligned}\Pr(H) &= 1/10 \\ \Pr(F) &= 1/40 \\ \Pr(H|F) &= 1/2\end{aligned}$$

Headaches are rare and flu is rarer, but if you have the flu, then there is a 50-50 chance you will have a headache

Conditional Probability



H = “Have headache”
 F = “Have Flu”

$$\begin{aligned}\Pr(H) &= 1/10 \\ \Pr(F) &= 1/40 \\ \Pr(H|F) &= 1/2\end{aligned}$$

$$\begin{aligned}\Pr(H|F) &= \text{Fraction of flu inflicted worlds in which you have a headache} \\ &= (\# \text{ worlds with flu and headache}) / (\# \text{ worlds with flu}) \\ &= (\text{Area of “H and F” region}) / (\text{Area of “F” region}) \\ &= \Pr(H \wedge F) / \Pr(F)\end{aligned}$$

Conditional Probability

- Definition: $\Pr(A|B) = \Pr(A \wedge B) / \Pr(B)$

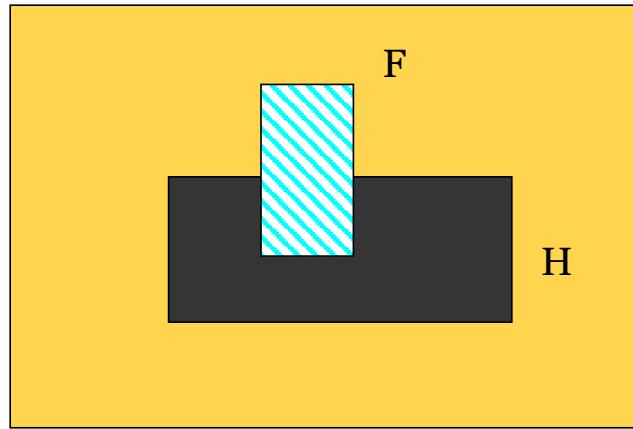
- Chain rule: $\Pr(A \wedge B) = \Pr(A|B) \Pr(B)$

$$\Pr(A, B, C) = \Pr(A|B, C) \Pr(B, C)$$

$\Pr(B|C) \Pr(C)$

Memorize these rules!

Inference



One day you wake up with a headache. You think “Drat! 50% of flues are associated with headaches so I must have a 50-50 chance of coming down with the flu”

H = “Have headache”
 F = “Have Flu”

$$\begin{aligned}\Pr(H) &= 1/10 \\ \Pr(F) &= 1/40 \\ \Pr(H|F) &= 1/2\end{aligned}$$

Is your reasoning correct?

$$\begin{aligned}\Pr(F \wedge H) &= \Pr(F) \Pr(H|F) = (1/40)(1/2) = 1/80 \\ \Pr(F|H) &= \frac{\Pr(F, H)}{\Pr(H)} = \frac{1/80}{1/10} = 1/8\end{aligned}$$

Example: Conditional Distribution

sunny		~sunny			
	cold	~cold			
headache	0.108	0.012	headache	0.072	0.008
~headache	0.016	0.064	~headache	0.144	0.576

$$\Pr(\text{headache} \wedge \text{cold} \mid \text{sunny}) = \frac{P(h, c, s)}{P(s)} = \frac{0.108}{0.108 + 0.012 + 0.016 + 0.064} = 0.54$$

$$\Pr(\text{headache} \wedge \text{cold} \mid \text{~sunny}) = \frac{P(h, c, \text{~s})}{P(\text{~s})} = \frac{0.072}{0.072 + 0.008 + 0.144 + 0.576} = 0.09$$

Bayes Rule

- Note: $\Pr(A|B)\Pr(B) = \Pr(A \wedge B) = \Pr(B \wedge A) = \Pr(B|A)\Pr(A)$
- Bayes Rule: $\Pr(B|A) = \frac{\Pr(A|B)\Pr(B)}{\Pr(A)}$

Memorize this!

Using Bayes' Rule for inference

- Often, we want to form a hypothesis about the world based on what we have observed
- Bayes' rule allows us to compute a belief about hypothesis H , given evidence e

$$P(H|e) = \frac{P(e|H)P(H)}{P(e)}$$

Posterior probability

Likelihood

Prior probability

Normalizing constant

The diagram illustrates the components of Bayes' rule. The formula $P(H|e) = \frac{P(e|H)P(H)}{P(e)}$ is shown. Red arrows point from the labels to the corresponding terms: 'Posterior probability' points to $P(H|e)$, 'Likelihood' points to $P(e|H)$, 'Prior probability' points to $P(H)$, and 'Normalizing constant' points to $P(e)$.

More General Forms of Bayes Rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\sim A)P(\sim A)}$$

$$P(A|B \wedge X) = \frac{P(B|A \wedge X)P(A|X)}{P(B|X)}$$

$$P(A = v_i|B) = \frac{P(B|A = v_i)P(A = v_i)}{\sum_{k=1}^n P(B|A = v_k)P(A = v_k)}$$

Probabilistic Inference

- By probabilistic inference, we mean
 - given a *prior* distribution $\Pr(X)$ over variables X of interest, representing degrees of belief
 - and given new evidence $E = e$ for some variable E
 - Revise your degrees of belief: *posterior* $\Pr(X|E = e)$
- Applications:
 - Medicine: $\Pr(disease|symptom1, symptom2, \dots, symptomN)$
 - Troubleshooting: $\Pr(cause|test1, test2, \dots, testN)$

Issues

- How do we specify the full joint distribution over a set of random variables X_1, X_2, \dots, X_n ?
 - Exponential number of possible worlds
 - e.g., if X_i is Boolean, then 2^n numbers (or $2^n - 1$ parameters, since they sum to 1)
 - These numbers are not robust/stable
- Inference is frightfully slow
 - Must sum over exponential number of worlds to answer queries
 - $\Pr(X_i) = \sum_{X_1} \dots \sum_{X_{i-1}} \sum_{X_{i+1}} \dots \sum_{X_n} \Pr(X_1, X_2, \dots, X_n)$
 - $\Pr(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n | X_i) = \frac{\Pr(X_1, \dots, X_n)}{\Pr(X_i)} = \frac{\Pr(x_1, \dots, x_n)}{\sum_{X_1} \dots \sum_{X_{i-1}} \sum_{X_{i+1}} \dots \sum_{X_n} \Pr(X_1, \dots, X_n)}$

Small Example: 3 Variables

sunny		\sim sunny			
	cold	\sim cold			
headache	0.108	0.012	headache	0.072	0.008
\sim headache	0.016	0.064	\sim headache	0.144	0.576

$$\Pr(\text{headache}) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2$$

$$\begin{aligned}\Pr(\text{headache} \wedge \text{cold} | \text{sunny}) &= \Pr(\text{headache} \wedge \text{cold} \wedge \text{sunny}) / \Pr(\text{sunny}) \\ &= 0.108 / (0.108 + 0.012 + 0.016 + 0.064) = 0.54\end{aligned}$$

$$\begin{aligned}\Pr(\text{headache} \wedge \text{cold} | \sim \text{sunny}) &= \Pr(\text{headache} \wedge \text{cold} \wedge \sim \text{sunny}) / \Pr(\sim \text{sunny}) \\ &= 0.072 / (0.072 + 0.008 + 0.144 + 0.576) = 0.09\end{aligned}$$

Intractable Inference

- How do we avoid the exponential blow up of joint distribution and probabilistic inference?
 - no solution in general
 - but in practice there is structure we can exploit
- We'll use **conditional independence**

Independence

- Recall that X and Y are *independent* iff:

$$\begin{aligned}\Pr(X = x) &= \Pr(X = x | Y = y) \\ \Leftrightarrow \Pr(Y = y) &= \Pr(Y = y | X = x) \\ \Leftrightarrow \Pr(X = x, Y = y) &= \Pr(X = x) \Pr(Y = y) \\ \forall x \in \text{dom}(X), y \in \text{dom}(Y) &\end{aligned}$$

- Intuitively, learning the value of Y doesn't influence our beliefs about X and vice versa.
- Example: $\Pr(\text{Sunny} | \text{ToothCavity}) = \Pr(\text{Sunny})$
 $\Pr(\text{ToothCavity} | \text{Sunny}) = \Pr(\text{ToothCavity})$

Conditional Independence

- Two *variables* X and Y are conditionally independent given variable Z
$$\begin{aligned} \Pr(X = x|Z = z) &= \Pr(X = x|Y = y, Z = z) \\ \Leftrightarrow \Pr(Y = y|Z = z) &= \Pr(Y = y|X = x, Z = z) \\ \Leftrightarrow \Pr(X = x, Y = y|Z = z) &= \Pr(X = x|Z = z) \Pr(Y = y|Z = z) \\ \forall x \in \text{dom}(X), y \in \text{dom}(Y), z \in \text{dom}(Z) \end{aligned}$$
- If you know the value of Z (*whatever* it is), nothing you learn about Y will influence your beliefs about X
- Example: $\Pr(\text{ToothAche}|\text{ToothCavity}, \text{ToothCatch}) = \Pr(\text{ToothAche}|\text{ToothCavity})$
 $\Pr(\text{ToothCatch}|\text{ToothCavity}, \text{ToothAche}) = \Pr(\text{ToothCatch}|\text{ToothCavity})$

What good is independence?

- Suppose (say, Boolean) variables X_1, X_2, \dots, X_n are mutually independent
 - We can specify full joint distribution using only n parameters (linear) instead of $2^n - 1$ (exponential)
- How? Simply specify $\Pr(x_1), \dots, \Pr(x_n)$
 - From this we can recover the probability of any world or any (conjunctive) query easily
 - Recall $\Pr(x_1, \dots, x_n) = \Pr(x_1) \dots \Pr(x_n)$

Example

- 4 independent Boolean random vars X_1, X_2, X_3, X_4

$$\Pr(x_1) = 0.4, \Pr(x_2) = 0.2, \Pr(x_3) = 0.5, \Pr(x_4) = 0.8$$

$$\begin{aligned}\Pr(x_1, \sim x_2, x_3, x_4) &= \Pr(x_1) (1 - \Pr(x_2)) \Pr(x_3) \Pr(x_4) \\ &= (0.4)(0.8)(0.5)(0.8) \\ &= 0.128\end{aligned}$$

$$\begin{aligned}\Pr(x_1, x_2, x_3 | x_4) &= \Pr(x_1) \Pr(x_2) \Pr(x_3) \mathbf{1} \\ &= (0.4)(0.2)(0.5)(1) \\ &= 0.04\end{aligned}$$

The Value of Independence

- Complete independence reduces both *representation of joint distribution* and *inference* from $O(2^n)$ to $O(n)!!$
- **Unfortunately**, such complete mutual independence is very rare. Most realistic domains do not exhibit this property.
- **Fortunately**, most domains do exhibit a fair amount of conditional independence. We can exploit conditional independence for representation and inference as well.
- **Bayesian networks** do just this

An Aside on Notation

- $\Pr(X)$ for variable X (or set of variables) refers to the *(marginal) distribution* over X . $\Pr(X|Y)$ refers to the family of conditional distributions over X , one for each $y \in \text{Dom}(Y)$.
- Distinguish between $\Pr(X)$ -- which is a distribution – and $\Pr(x)$ or $\Pr(\sim x)$ (or $\Pr(x_i)$ for non-Boolean vars) -- which are numbers. Think of $\Pr(X)$ as a function that accepts any $x_i \in \text{Dom}(X)$ as an argument and returns $\Pr(x_i)$.
- Think of $\Pr(X|Y)$ as a function that accepts any x_i and y_k and returns $\Pr(x_i|y_k)$. Note that $\Pr(X|Y)$ is not a single distribution; rather it denotes the family of distributions (over X) induced by the different $y_k \in \text{Dom}(Y)$

Exploiting Conditional Independence

- Consider a story:
 - If Pascal woke up too early E , Pascal probably needs coffee C ; if Pascal needs coffee, he's likely grumpy G . If he is grumpy then it's possible that the lecture won't go smoothly L . If the lecture does not go smoothly then the students will likely be sad S .

E - Pascal woke up too early G - Pascal is grumpy S - Students are sad
 C - Pascal needs coffee L - The lecture did not go smoothly

Conditional Independence

- If you learned any of E , C , G , or L , would your assessment of $\Pr(S)$ change?
 - If any of these are seen to be true, you would increase $\Pr(s)$ and decrease $\Pr(\sim s)$.
 - So S is *not independent* of E , or C , or G , or L .
- If you knew the value of L (true or false), would learning the value of E , C , or G influence $\Pr(S)$?
 - Influence that these factors have on S is mediated by their influence on L .
 - Students aren't sad because Pascal was grumpy, they are sad because of the lecture.
 - So S is *independent* of E , C , and G , *given* L

Conditional Independence

- So S is *independent* of E , and C , and G , *given* L
- Similarly:
 - S is *independent* of E , and C , *given* G
 - G is *independent* of E , *given* C
- This means that:

$$\Pr(S|L, \{G, C, E\}) = \Pr(S|L)$$

$$\Pr(L|G, \{C, E\}) = \Pr(L|G)$$

$$\Pr(G|C, \{E\}) = \Pr(G|C)$$

$\Pr(C|E)$ and $\Pr(E)$ don't "simplify"

Conditional Independence

- By the chain rule (for any instantiation of $S \dots E$):

$$\Pr(S, L, G, C, E) = \Pr(S|L, G, C, E) \Pr(L|G, C, E) \Pr(G|C, E) \Pr(C|E) \Pr(E)$$

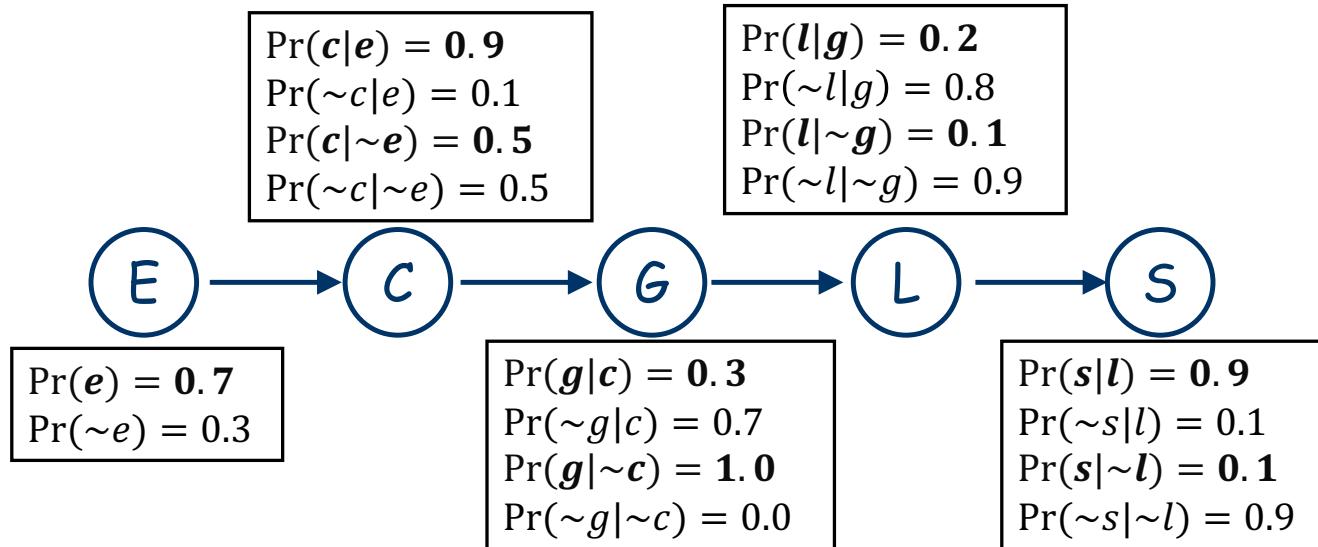
- By our independence assumptions:

$$\Pr(S, L, G, C, E) = \Pr(S|L) \Pr(L|G) \Pr(G|C) \Pr(C|E) \Pr(E)$$

- We can specify the full joint by specifying five *local conditional distributions*:

$$\Pr(S|L); \Pr(L|G); \Pr(G|C); \Pr(C|E); \text{ and } \Pr(E)$$

Example Quantification

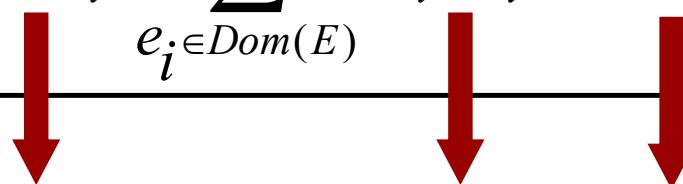


- Specifying the joint requires only 9 parameters (if we note that half of these are “1 minus” the others), instead of 31 for the explicit representation
 - linear in number of variables instead of exponential!
 - linear generally if dependence has a chain structure

Inference is Easy

- Want to know $\Pr(g)$? Use sum out rule:

$$\begin{aligned} P(g) &= \sum_{c_i \in \text{Dom}(C)} \Pr(g | c_i) \Pr(c_i) \\ &= \sum_{c_i \in \text{Dom}(C)} \Pr(g | c_i) \sum_{e_i \in \text{Dom}(E)} \Pr(c_i | e_i) \Pr(e_i) \end{aligned}$$



These are all terms specified in our local distributions!

Inference is Easy

- Computing $\Pr(g)$ in more concrete terms:

$$\Pr(c) = \Pr(c|e)\Pr(e) + \Pr(c|\sim e)\Pr(\sim e) = \cancel{0.2} \overset{0.9}{*} 0.7 + 0.5 * 0.3 = 0.78$$

$$\Pr(\sim c) = \Pr(\sim c|e)\Pr(e) + \Pr(\sim c|\sim e)\Pr(\sim e) = 0.22$$

$$\Pr(\sim c) = 1 - \Pr(c), \text{ as well}$$

$$\Pr(g) = \Pr(g|c)\Pr(c) + \Pr(g|\sim c)\Pr(\sim c) = 0.3 * 0.78 + 1.0 * 0.22 = 0.454$$

$$\Pr(\sim g) = 1 - \Pr(g) = 0.546$$