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Outline

§ Probability theory

§ Uncertainty via probabilities

§ Probabilistic inference
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Terminology

§ Probability distribution:
§ A specification of a probability for each event in our sample space

§ Probabilities must sum to 1

§ Assume the world is described by two (or more) random variables
§ Joint probability distribution 

§ Specification of probabilities for all combinations of events
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Joint distribution 

§ Given two random variables ! and ":
§ Joint distribution: 

    Pr($ = &	Λ	) = *) for all &, *

§ Marginalisation (sumout rule):
    Pr($ = &) 	= 	Σ!	Pr($ = &	Λ	) = *)
    Pr() = *) 	= 	Σ"	Pr($ = &	Λ	) = *)
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cold ~cold

headache 0.108 0.012

~headache 0.016 0.064

cold ~cold

headache 0.072 0.008

~headache 0.144 0.576

sunny ~sunny

P(headache Λ sunny Λ cold) =            

P(~headache Λ sunny Λ ~cold) = 

P(headache) =

marginalization

Example: Joint Distribution
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Conditional Probability
§ Pr(!|"): fraction of worlds in which " is true that also have ! true

H

F
H = “Have headache”
F = “Have Flu”

Pr($) = 1/10
Pr(*) = 1/40
Pr($|*) = 1/2

Headaches are rare and flu is 
rarer, but if you have the flu, then 
there is a 50-50 chance you will 
have a headache
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Conditional Probability

H

F H = “Have headache”
F = “Have Flu”

Pr($) = 1/10
Pr(*) = 1/40
Pr($|*) = 1/2

Pr($|*) = Fraction of flu inflicted worlds in which you have a headache
               = (# worlds with flu and headache)/(# worlds with flu)
               = (Area of “H and F” region)/(Area of “F” region)
               = Pr $	Λ	* /	Pr(*)
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Conditional Probability

§ Definition: Pr(!|") 	= 	Pr(!	Λ	")	/	Pr(")

§ Chain rule: Pr(!	Λ	") 	= 	Pr(!|")	Pr(")

Memorize these rules!
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Inference

H

F H = “Have headache”
F = “Have Flu”

 Pr($) = 1/10
 Pr(*) = 1/40
 Pr($|*) = 1/2

One day you wake up with a 
headache.  You think “Drat! 50% of 
flues are associated with headaches so 
I must have a 50-50 chance of coming 
down with the flu”

Is your reasoning correct?

Pr(.Λ/) =
 Pr . / =
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cold ~cold

headache 0.108 0.012

~headache 0.016 0.064

cold ~cold

headache 0.072 0.008

~headache 0.144 0.576

sunny ~sunny

Pr(ℎ12324ℎ1	Λ	4563	|	7899:) 	=

Pr(ℎ12324ℎ1	Λ	4563	|	~7899:) 	=

Example: Conditional Distribution
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Bayes Rule

§ Note: Pr(!|")Pr(") 	= 	Pr(!Λ") 	= 	Pr("Λ!) = Pr("|!),-(!)

§ Bayes Rule:     Pr " ! = <=(>|?)<=(@)
<= A

Memorize this!
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§ Often, we want to form a hypothesis about the world based on what 
we have observed

§ Bayes’ rule allows us to compute a belief about hypothesis ., given 
evidence /

Posterior probability

Prior probabilityLikelihood

Normalizing constant

Using Bayes’ Rule for inference
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, ! " = , " ! , !
, " ! , ! + , " ~! , ~!

, ! " ∧ 3 = , " ! ∧ 3 , !|3
, "|3

, ! = 4B " = , " ! = 4B , ! = 4B
∑CDEF , " ! = 4C , ! = 4C

More General Forms of Bayes Rule
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§ By probabilistic inference, we mean
§  given a prior distribution Pr(0) over variables 0 of interest, representing 

degrees of belief
§ and given new evidence 1 = 2 for some variable 1
§ Revise your degrees of belief: posterior  Pr(0|1 = 2)

§ Applications:
§ Medicine: Pr 4562&62 6789:;81, 6789:;82,… , 6789:;8?
§ Troubleshooting: Pr(@&A62|:26:1, :26:2, … , :26:?)
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Probabilistic Inference
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§ How do we specify the full joint distribution over a set of random 
variables !!, !", … , !# 	?
§ Exponential number of possible worlds

§ e.g., if !# is Boolean, then 2$ numbers (or 2$ − 1 parameters, since they sum to 1)

§ These numbers are not robust/stable

§ Inference is frightfully slow
§ Must sum over exponential number of worlds to answer queries

§ Pr G" = ∑#!…∑#"#!	∑#"$!…∑#% Pr(G$, G%, … , G&) 

§ KL G$, … , G"'$, G"($, … , G& G" = ) #!,…,#%
) #"

= ) ,!,…,#%
∑&!…∑&"#!	 ∑&"$!…∑&% ./ #!,…,#%
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Issues
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cold ~cold

headache 0.108 0.012

~headache 0.016 0.064

cold ~cold

headache 0.072 0.008

~headache 0.144 0.576

sunny ~sunny

Pr(ℎ12324ℎ1 ∧ 4563|7899:) = Pr ℎ12324ℎ1 ∧ 4563 ∧ 7899: / Pr(7899:) 
                  = 	0.108/(0.108 + 0.012 + 0.016 + 0.064) = 0.54
Pr(ℎ12324ℎ1 ∧ 4563|~7899:) = Pr ℎ12324ℎ1 ∧ 4563 ∧ ~7899: /Pr(~7899:)
                   = 	0.072/(0.072 + 0.008 + 0.144 + 0.576) = 0.09

Pr(ℎ12324ℎ1) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2
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Small Example: 3 Variables
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§ How do we avoid the exponential blow up of joint distribution 
and probabilistic inference?
§ no solution in general

§ but in practice there is structure we can exploit

§ We’ll use conditional independence
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Intractable Inference
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§ Recall that 3 and 6 are independent iff:
Pr # = % = Pr # = % & = '
⇔ Pr & = ' = Pr & = ' # = %
⇔ Pr # = %, & = ' = Pr # = % Pr & = '
∀% ∈ ,-. # , ' ∈ ,-.(&)

§ Intuitively, learning the value of 6 doesn’t influence our  
beliefs about 3 and vice versa.

§ Example: Pr 7899:|;<<=ℎ?@4A=: = Pr 7899:
                  Pr ;<<=ℎ?@4A=: 7899: = Pr(;<<=ℎ?@4A=:)
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Independence
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§ Two variables 3 and 6 are conditionally independent given variable B 
Pr # = %|2 = 3 = Pr # = % & = ', 2 = 3
⇔ Pr & = '|2 = 3 = Pr & = ' # = %, 2 = 3
⇔ Pr # = %, & = '|2 = 3 = Pr # = %|2 = 3 Pr & = '|2 = 3
∀% ∈ ,-. # , ' ∈ ,-. & , 3 ∈ ,-.(2)

§ If you know the value of B (whatever it is), nothing you learn about 6 
will influence your beliefs about 3

§ Example: Pr U55VℎW4ℎ1 U55VℎX2YZV:, U55VℎX2V4ℎ = Pr U55VℎW4ℎ1 U55VℎX2YZV:
                  Pr U55VℎX2V4ℎ U55VℎX2YZV:, U55VℎW4ℎ1 = Pr(U55VℎX2V4ℎ|U55VℎX2YZV:)
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Conditional Independence



CS486/686 Winter 2026 - Lecture 5 - Pascal Poupart

§ Suppose (say, Boolean) variables 31, 32, … , 3'	are mutually 
independent
§ We can specify full joint distribution using only n parameters 

(linear) instead of 2" − 1	(exponential)

§ How? Simply specify Pr E1 , … , Pr(E')
§ From this we can recover the probability of any world 

or any (conjunctive) query easily
§ Recall Pr([$, … , [&) = Pr([$)…Pr([&) 
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What good is independence?
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§ 4 independent Boolean random vars 31, 32, 33, 34
Pr(E1) = 0.4, Pr(E2) = 0.2, Pr(E3) = 0.5, Pr(E4) = 0.8

Pr(EE, ~E\, E], E^) = Pr EE 1 − Pr E\ Pr(E]) Pr(E^)
                            =	 (0.4)(0.8)(0.5)(0.8)
                            = 	0.128
Pr(EE, E\, E]|E^) = Pr(EE) Pr(E\) Pr(E]) N

                            = (0.4)(0.2)(0.5)(1)
                            = 0.04
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Example
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§ Complete independence reduces both representation of joint 
distribution and inference from O(2F) to O(9)!!

§ Unfortunately, such complete mutual independence is very 
rare. Most realistic domains do not exhibit this property.

§ Fortunately, most domains do exhibit a fair amount of 
conditional independence. We can exploit conditional 
independence for representation and inference as well.

§ Bayesian networks do just this
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The Value of Independence
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§ Pr(#) for variable # (or set of variables) refers to the (marginal) distribution 
over #. Pr(#|&) refers to the family of conditional distributions over #, one for 
each ' ∈ 8-.(&).

§ Distinguish between Pr(#) -- which is a distribution – and Pr(%) or Pr(~%)	(or 
Pr(%() for non-Boolean vars) -- which are numbers. Think of Pr(#) as a 
function that accepts any %# ∈ 8-.(#)	as an argument and returns Pr(%().

§ Think of Pr(#|&) as a function that accepts any %( and ') and returns 
Pr(%(|')). Note that Pr(#|&) is not a single distribution; rather it denotes the 
family of distributions (over #) induced by the different '$ ∈ 8-.(&)
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An Aside on Notation
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§ Consider a story:
§ If Pascal woke up too early :, Pascal probably needs coffee ;; if 

Pascal needs coffee, he's likely grumpy <. If he is grumpy then it’s 
possible that the lecture won’t go smoothly =. If the lecture does not 
go smoothly then the students will likely be sad >. 

E C L SG

E – Pascal woke up too early    G – Pascal is grumpy   S – Students are sad
                 C – Pascal needs coffee     L– The lecture did not go smoothly
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Exploiting Conditional Independence
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§ If you learned any of $, %, &, or ', would your assessment of Pr(+) change? 
§ If any of these are seen to be true, you would increase Pr(() and decrease Pr(~(). 
§ So + is not independent of ,, or -, or ., or /.

§ If you knew the value of ' (true or false), would learning the value of $, %, 
or & influence Pr(+)?
§ Influence that these factors have on + is mediated by their influence on /.
§ Students aren’t sad because Pascal was grumpy, they are sad because of the lecture. 
§ So + is independent of ,, -, and ., given  /

E C L SG
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Conditional Independence
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§ So > is independent of :, and ;, and <, given =
§ Similarly:

§ _ is independent of `, and X, given a
§ a	 is independent of `, given X

§ This means that:
 Pr(_|b, {a, X, `}) 	 = 	 Pr(_|b)
 Pr(b|a, {X, `}) 	= 	Pr(b|a)
 Pr(a|X, {`}) 	= 	Pr(a|X)
 Pr(X|`)    and    Pr(`)   don’t “simplify”

E C L SG
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Conditional Independence
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§ By the chain rule (for any instantiation of +…$):
Pr(+, /, ., -, ,) = Pr(+|/, ., -, ,)	Pr(/|., -, ,)	Pr(.|-, ,)	Pr(-|,)	Pr(,)

§ By our independence assumptions:
Pr(+, /, ., -, ,) = Pr(+|/)	Pr(/|.)	Pr(.|-)	Pr(-|,)	Pr(,)

§ We can specify the full joint by specifying five local conditional 
distributions: 
Pr(+|/); Pr(/|.); Pr(.|-); Pr(-|,); and Pr(,) 

E C L SG
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Conditional Independence
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§ Specifying the joint requires only 9 parameters (if we note that half of these are 
“1 minus” the others), instead of 31 for the explicit representation
§ linear in number of variables instead of exponential!

§ linear generally if dependence has a chain structure

E C L SG

Pr((|*) = -. / 
Pr(~1|2) = 0.1 
Pr((|~*) = -. 5 
Pr(~1|~2) = 0.5 

Pr(*) = -. 7 
Pr(~2) = 0.3 

Pr(9|() = -. : 
Pr(~;|1) = 0.7 
Pr(9|~() = =. - 
Pr(~;|~1) = 0.0 

Pr(>|?) = -. / 
Pr(~@|A) = 0.1 
Pr(>|~?) = -. = 
Pr(~@|~A) = 0.9 

Pr(?|9) = -. C 
Pr ~A ; = 0.8 
Pr(?|~9) = -. = 
Pr(~A|~;) = 0.9 
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Example Quantification
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§ Want to know Pr(P)? Use sum out rule:

E C L SG

!"#$!%"#$!%"#$

!"#$!%"#$!$

!$!$

!$

!
"#$%

!!
C#$%D

!

!
C#$%D

!

EEDD)

DD))*

!E!

!

!!

!

""

"

=

=

These are all terms specified in our local distributions!
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Inference is Easy
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Inference is Easy

§ Computing Pr(P) in more concrete terms:

   Pr(?) 	= Pr(?|@) Pr(@) 	+ Pr(?|~@) Pr(~@) = 	0.8	 ∗ 	0.7	 + 	0.5	 ∗ 	0.3	 = 	0.78
Pr(~c) 	= 	Pr(~?|@)Pr(@) 	+ 	Pr(~?|~@)Pr(~@) 	= 	0.22

     Pr(~1) 	= 	1	– 	Pr(1), as well

 Pr(I) 	= 	Pr(I|?)Pr(?) 	+ 	Pr(I|~?)Pr(~?) = 	0.3	 ∗ 	0.78	 + 1.0	 ∗ 	0.22	 = 	0.454
 Pr(~I) 	= 	1	– 	Pr(I) 	= 	0.546 

E C L SG
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