
Lecture 4: Constraint Satisfaction
CS486/686 Intro to Artificial Intelligence

Pascal Poupart
David R. Cheriton School of Computer Science

2026-1-15

Outline

§ What are Constraint Satisfaction Problems (CSPs)?

§ Standard search and CSPs

§ Improvements
§ Backtracking

§ Backtracking + heuristics

§ Forward checking

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 2

Introduction

§ In the last couple of lectures we have been solving problems by
searching in a space of states
§ Treating states as black boxes, ignoring any structure inside them

§ Using problem-specific routines

§ Today we study problems where the state structure is important

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 3

§ States: all arrangements of 0,1,…, or 8 queens
on the board

§ Initial state: 0 queens on the board

§ Successor function: Add a queen to the
board

§ Goal test: 8 queens on the board with no two
of them attacking each other

64x63x…57 ≈ 3x1014 states

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 4

§ States: all arrangements k queens (0 £ k £ 8),
one per column in the leftmost k columns, with
no queen attacking another

§ Initial state: 0 queens on the board
§ Successor function: Add a queen to the

leftmost empty column such that it is not
attacked

§ Goal test: 8 queens on the board

2057 States

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 5

Introduction

§ Earlier search methods studied often make choices in an arbitrary
order

§ In many problems the same state can be reached independent of the
order in which the moves are chosen (commutative actions)

§ Can we solve problems efficiently by being smart in the order in which
we take actions?

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 6

Place a queen in a square

Remove conflicting squares
from consideration

4-Queens Constraint Propagation

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 7

Place a queen in a square

Remove conflicting squares
from consideration

4-Queens Constraint Propagation

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 8

Place a queen in a square

Remove conflicting squares
from consideration

4-Queens Constraint Propagation

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 9

Place a queen in a square

Remove conflicting squares
from consideration

4-Queens Constraint Propagation

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 10

CSP Definition

§ A constraint satisfaction problem (CSP) is defined by {𝑉, 𝐷, 𝐶}	where
§ 𝑉 = {𝑉1, 𝑉2, … , 𝑉𝑛} is a set of variables

§ 𝐷 = {𝐷1, … , 𝐷𝑛} is the set of domains, 𝐷𝑖 is the domain of possible values for
variable 𝑉𝑖

§ 𝐶 = {𝐶1, … , 𝐶!} is the set of constraints
§ Each constraint involves some subset of the variables and specifies the allowable

combinations of values for that subset

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 11

CSP Definition
§ A state is an assignment of values to some or all of the variables

{𝑉" = 𝑥", 𝑉# = 𝑥#, … }

§ An assignment is consistent if it does not violate any constraints

§ A solution is a complete, consistent assignment (“hard constraints”)
§ Some CSPs also require an objective function to be optimized (“soft

constraints”)

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 12

Example 1: 8-Queens
§ 64 variables 𝑉𝑖𝑗, 𝑖 = 1 to 8, 𝑗 = 1 to 8

§ Domain of each variable is {0,1}

§ Constraints
§ 𝑉𝑖𝑗 = 1	à	𝑉𝑖𝑘 = 0 for all 𝑘 ≠ 𝑗

§ 𝑉𝑖𝑗 = 1	à	𝑉𝑘𝑗 = 0 for all 𝑘 ≠ 	𝑖

§ Similar constraint for diagonals

§ å𝑖𝑗	𝑉𝑖𝑗 = 8

Binary constraints
relate two variables

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 13

Example 2 – 8 queens
§ 8 variables 𝑉𝑖, 𝑖 = 1 to 8

§ Domain of each variable is {1,2, … , 8}

§ Constraints
§ 𝑉𝑖 = 𝑘	 → 	𝑉# ≠ 𝑘 for all 𝑗 ≠ 𝑖

§ Similar constraints for diagonals

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 14

Example 3 - Map Coloring

§ 7 variables {𝑊𝐴,𝑁𝑇, 𝑆𝐴, 𝑄, 𝑁𝑆𝑊,𝑉, 𝑇}
§ Each variable has the same domain: {𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒}
§ No two adjacent variables have the same value:
 𝑊𝐴¹𝑁𝑇,𝑊𝐴¹𝑆𝐴,𝑁𝑇¹𝑆𝐴,𝑁𝑇¹𝑄, 𝑆𝐴¹𝑄, 𝑆𝐴¹𝑁𝑆𝑊, 𝑆𝐴¹𝑉, 𝑄¹𝑁𝑆𝑊,𝑁𝑆𝑊¹𝑉

WA

NT

SA

Q

NSW
V

T

WA

NT

SA

Q

NSW
V

T

T
WA

NT

SA

Q

NSW

V

Constraint graph

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 15

Example 4 - Street Puzzle 1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

Who owns the Zebra?
Who drinks Water?

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 16

Example 4 - Street Puzzle 1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 17

(Ni = English) Û (Ci = Red)

(Ni = Japanese) Û (Ji = Painter)

(N1 = Norwegian)

left as an exercise

(Ci = White) Û (Ci+1 = Green)
(C5 ¹ White)
(C1 ¹ Green)

Example 4 - Street Puzzle 1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 18

(Ni = English) Û (Ci = Red)

(Ni = Japanese) Û (Ji = Painter)

(N1 = Norwegian)
(Ci = White) Û (Ci+1 = Green)
(C5 ¹ White)
(C1 ¹ Green)

unary constraints

Example 4 - Street Puzzle 1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 19

"i,jÎ[1,5], i¹j, Ni ¹ Nj
"i,jÎ[1,5], i¹j, Ci ¹ Cj
 ...

Implicit constraints:

Example 4 - Street Puzzle 1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left à N1 = Norwegian
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk à D3 = Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 20

Use inference to
derive new facts

Example 4 - Street Puzzle 1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house à C1 ¹ Red
The Spaniard has a Dog à A1 ¹ Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left à N1 = Norwegian
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk à D3 = Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice à J3 ¹ Violinist
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 21

Use inference to
derive new facts

Example 5 - Scheduling

Four tasks 𝑇1, 𝑇2, 𝑇3, and 𝑇4 are related by time constraints:
• 𝑇1 must be done during 𝑇3
• 𝑇2 must be achieved before 𝑇1 starts
• 𝑇2 must overlap with 𝑇3
• 𝑇4 must start after 𝑇1 is complete

§ Are the constraints compatible?
§ What are the possible time relations between two tasks?
§ What if the tasks use resources in limited supply?

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 22

Example 6 - 3-Sat

§ 𝑛 Boolean variables, 𝑉1, … , 𝑉𝑛

§ 𝐾 constraints of the form 𝑉𝑖	 ∨ 	𝑉𝑗 ∨ 𝑉𝑘 where 𝑉𝑖 is either true or false

§ NP-complete

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 23

Properties of CSPs
§ Types of variables

§ Discrete and finite
§ Map colouring, 8-queens, Boolean CSPs

§ Discrete variables with infinite domains
§ Scheduling jobs in a calendar
§ Require a constraint language (𝐽𝑜𝑏1 + 3	£	𝐽𝑜𝑏2)

§ Continuous domains
§ Scheduling on the Hubble telescope
§ Linear programming

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 24

Properties of CSPs
§ Types of constraints

§ Unary constraint relates a single variable to a value
§ 𝑄𝑢𝑒𝑒𝑛𝑠𝑙𝑎𝑛𝑑 = 𝐵𝑙𝑢𝑒, 𝑆𝐴 ≠ 𝐺𝑟𝑒𝑒𝑛

§ Binary constraint relates two variables
§ 	𝑆𝐴 ≠ 𝑁𝑆𝑊

§ Can use a constraint graph to represent CSPs with only binary constraints

§ Higher order constraints involve three of more variables
§ 𝐴𝑙𝑙𝑑𝑖𝑓𝑓(𝑉1, … , 𝑉𝑛)

§ Can use a constraint hypergraph to represent the problem

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 25

§ 𝑁 variables 𝑉1, … , 𝑉𝑛
§ Valid assignment: {𝑉1 = 𝑥1, … , 𝑉𝑘 = 𝑥𝑘} for 0	£	𝑘	£	𝑛 such that values

satisfy constraints on the variables

§ States: valid assignments

§ Initial state: empty assignment

§ Successor: {𝑉1 = 𝑥1, … , 𝑉$ = 𝑥𝑘}	à	{𝑉1 = 𝑥1, … , 𝑉𝑘 = 𝑥𝑘, 𝑉$%& = 𝑥$%&}

§ Goal test: complete assignment

§ If all domains have size 𝑑, then there are 𝑂(𝑑𝑛) complete assignments

CSPs and search

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 26

CSPs and commutativity
§ CSPs are commutative!

§ The order of application of any given set of actions has no effect on the outcome

§ When assigning values to variables we reach the same partial assignment, no
matter the order

§ All CSP search algorithms generate successors by considering possible
assignments for only a single variable at each node in the search tree

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 27

CSPs and commutativity
§ 3 variables 𝑉1, 𝑉2, 𝑉3
§ Let the current assignment be 𝐴 = {𝑉1 = 𝑥1}
§ Pick variable 𝑉?
§ Let domain of 𝑉3 be {𝑎, 𝑏, 𝑐}
§ The successors of 𝐴 are

{𝑉1 = 𝑥1, 𝑉3 = 𝑎}
{𝑉1 = 𝑥1, 𝑉3 = 𝑏}
{𝑉1 = 𝑥1, 𝑉3 = 𝑐}

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 28

Depth first search that chooses values for one variable at a time

Backtracks when a variable has no legal values to assign

Backtracking Search

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 29

T
WA

NT

SA

Q

NSW

V

0

Backtracking

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 30

T
WA

NT

SA

Q

NSW

V

0

WA=blue WA=greenWA=red

Backtracking

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 31

T
WA

NT

SA

Q

NSW

V

0

WA=blue WA=greenWA=red

NT=red NT=greenNT=blue

Backtracking

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 32

T
WA

NT

SA

Q

NSW

V

0

WA=blue WA=greenWA=red

NT=red NT=green

SA=green

NT=blue

SA=redSA=blue

Backtracking

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 33

Backtracking and efficiency
§ Backtracking search is an uninformed search method

§ Not very efficient

§ We can do better by thinking about the following questions
§ Which variable should be assigned next?

§ In which order should its values be tried?

§ Can we detect inevitable failure early (and avoid same failure in other paths)?

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 34

Most constrained variable
§ Choose the variable which has the fewest “legal” moves

§ AKA minimum remaining values (MRV) heuristic

𝐷𝑁𝑇 = {𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒}

 𝐷𝑆𝐴 = {𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒}

 𝐷𝑜𝑡ℎ𝑒𝑟𝑠 = {𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒}

𝐷𝑆𝐴 = {𝑏𝑙𝑢𝑒}

 𝐷𝑄 = {𝑏𝑙𝑢𝑒, 𝑟𝑒𝑑}

 𝐷𝑜𝑡ℎ𝑒𝑟𝑠 = {𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒}

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 35

Most constraining variable

§ Most constraining variable:
§ choose the variable with the most constraints on remaining variables

§ Tie-breaker among most constrained variables

SA is involved in 5 constraints

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 36

Least-constraining value

• Given a variable, choose the least constraining value:
– the one that rules out the fewest values in the remaining variables

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 37

Forward checking

§ The third question was
§ Is there a way to detect failure early?

§ Forward checking
§ Keep track of remaining legal values for unassigned variables

§ Terminate search when any variable has no legal values

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 38

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB

T
WA

NT

SA

Q

NSW

V

Forward Checking in Map Coloring

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 39

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R RGB RGB RGB RGB RGB RGB

T
WA

NT

SA

Q

NSW

V

Forward checking removes the value Red of NT and of SA

Forward Checking in Map Coloring

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 40

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R GB G RGB RGB GB RGB

T
WA

NT

SA

Q

NSW

V

Forward Checking in Map Coloring

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 41

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

T
WA

NT

SA

Q

NSW

V

Forward Checking in Map Coloring

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 42

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

Empty set: the current assignment
 {(𝑊𝐴	ß	𝑅), (𝑄	ß	𝐺), (𝑉	ß	𝐵)}
does not lead to a solution

Forward Checking in Map Coloring

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 43

Example: 4 Queens

X1

{1,2,3,4}

X2

{1,2,3,4}

X3

{1,2,3,4}

X4

{1,2,3,4}

1

2

3

4

1 2 3 4

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 44

Example: 4 Queens

X1

{1,2,3,4}

X2

{1,2,3,4}

X3

{1,2,3,4}

X4

{1,2,3,4}

1

2

3

4

1 2 3 4

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 45

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , ,3,4}

X3

{ ,2, ,4}

X4

{ ,2,3, }

1

2

3

4

1 2 3 4

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 46

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , ,3,4}

X3

{ ,2, ,4}

X4

{ ,2,3, }

1

2

3

4

1 2 3 4

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 47

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , ,3,4}

X3

{ , , , }

X4

{ ,2, , }

1

2

3

4

1 2 3 4

No possibilities for X3, backtrack trying different value for X2

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 48

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , ,3,4}

X3

{ ,2, ,4}

X4

{ ,2,3, }

1

2

3

4

1 2 3 4

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 49

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , ,3,4}

X3

{ ,2, ,}

X4

{ ,,3, }

1

2

3

4

1 2 3 4

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 50

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , ,3,4}

X3

{ ,2, ,}

X4

{ ,,3, }

1

2

3

4

1 2 3 4

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 51

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , ,3,4}

X3

{ ,2, ,}

X4

{ ,,, }

1

2

3

4

1 2 3 4

No possibilities for X4, backtrack trying different value for X1
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 52

Example: 4 Queens

X1

{1,2,3,4}

X2

{ 1, 2,3,4}

X3

{ 1,2,3,4}

X4

{ 1,2,3,4}

1

2

3

4

1 2 3 4

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 53

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , , ,4}

X3

{ 1, ,3, }

X4

{ 1, ,3,4}

1

2

3

4

1 2 3 4

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 54

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , , ,4}

X3

{ 1, ,3, }

X4

{ 1, ,3,4}

1

2

3

4

1 2 3 4

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 55

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , , ,4}

X3

{ 1, , , }

X4

{ 1, ,3, }

1

2

3

4

1 2 3 4

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 56

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , , ,4}

X3

{ 1, , , }

X4

{ 1, ,3, }

1

2

3

4

1 2 3 4

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 57

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , , ,4}

X3

{ 1, , , }

X4

{ , , 3,}

1

2

3

4

1 2 3 4

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 58

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , , ,4}

X3

{ 1, , , }

X4

{ , , 3,}

1

2

3

4

1 2 3 4

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 59

Summary

§ What you should know
§ How to formalize problems as CSPs

§ Backtracking search

§ Heuristics
§ Variable ordering

§ Value ordering

§ Forward checking

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 60

