Lecture 4: Constraint Satisfaction
CS486/686 Intro to Artificial Intelligence

Pascal Poupart
David R. Cheriton School of Computer Science

%’ WATERLOO

Outline

= What are Constraint Satisfaction Problems (CSPs)?
= Standard search and CSPs

= Improvements
= Backtracking
= Backtracking + heuristics

= Forward checking

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 2 @ WATE RLOO

Introduction

= In the last couple of lectures we have been solving problems by
searching in a space of states

= Treating states as black boxes, ignoring any structure inside them

= Using problem-specific routines

= Today we study problems where the state structure is important

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 3 @ WATE RLOO

o

oG

Wou

YO

= States: all arrangements of 0,1,..., or 8 queens
on the board

= Initial state: 0 queens on the board

= Successor function: Add a queen to the
board

= Goal test: 8 queens on the board with no two
of them attacking each other

64x63x...57 = 3x10'4 states

W UNIVERSITY OF

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 4 @ WATE RLOO

oL

Mo

WO

A

= States: all arrangements k queens (0 <k <8),
one per column in the leftmost k columns, with
no queen attacking another

= Initial state: 0 queens on the board

= Successor function: Add a queen to the
leftmost empty column such that it is not
attacked

= Goal test: 8 queens on the board
2057 States

W UNIVERSITY OF

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 5 @ WATE RLOO

Introduction

= Earlier search methods studied often make choices in an arbitrary
order

= In many problems the same state can be reached independent of the
order in which the moves are chosen (commutative actions)

= Can we solve problems efficiently by being smart in the order in which
we take actions?

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 6 @ WATE RLOO

L-Queens Constraint Propagation

Place a queen in a square

Remove conflicting squares
from consideration

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart

&>

UNIVERSITY OF

WATERLOO

L-Queens Constraint Propagation

Place a queen in a square

Remove conflicting squares

from consideration

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart

UNIVERSITY OF

WATERLOO

L-Queens Constraint Propagation

Place a queen in a square

Remove conflicting squares

from consideration

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart

UNIVERSITY OF

WATERLOO

L-Queens Constraint Propagation

Place a queen in a square

Remove conflicting squares

from consideration

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart

UNIVERSITY OF

WATERLOO

CSP Definition

= A constraint satisfaction problem (CSP) is defined by {V, D, C} where
=V ={V,V, ..,V }is aset of variables

= D ={D,,...,D,}is the set of domains, D, is the domain of possible values for
variable V;

= C ={C,,...,Cp} is the set of constraints

= Each constraint involves some subset of the variables and specifies the allowable
combinations of values for that subset

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 11 @ WATERLOO

CSP Definition

= A state is an assignment of values to some or all of the variables
{Vi — Xi,Vj = Xj, }

= An assignment is consistent if it does not violate any constraints

= A solution is a complete, consistent assignment (“hard constraints”)

= Some CSPs also require an objective function to be optimized (“soft
constraints”)

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 12 @ WATERLOO

Example 1: 8-Queens

= 64 variablesV,,i =1t08,j =1to 8

ijs
= Domain of each variable is {0,1}
= Constraints

=V, =1>V, =0forallk #j Binary constraints
V=15V, =0forallk # i relate two variables

= Similar constraint for diagonals

- Y.V, =8

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 13 @ WATERLOO

Example 2 - 8 queens

= 8 variables V,,i = 1to 8
» Domain of each variable is {1,2, ..., 8}

» Constraints
*Vi=k - Vi #ktorallj #i

= Similar constraints for diagonals

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 14 @ WATERLOO

Example 3 - Map Coloring

NT

ey

W SA Nsw | T
v

= 7 variables {WA, NT,SA,Q,NSW,V, T}
= Each variable has the same domain: {red, green, blue}
= No two adjacent variables have the same value:
WA=NT, WA#SA, NT#5A, NT#Q,SA=Q,SA=NSW ,SA=V, Q#NSW, NSW#V

Constraint graph

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 15 @ WATERLOO

Example 4 - Street Puzzle 1] 21 B] [4] [s

N; = {English, Spaniard, Japanese, Italian, Norwegian}
C; = {Red, Green, White, Yellow, Blue}
D, = {Tea, Coffee, Milk, Fruit-juice, Water}

The Englishman lives in the Red house J; = {Painter, Sculptor, Diplomat, Violinist, Doctor}
The Spaniard has a Dog A; = {Dog, Snails, Fox, Horse, Zebra}

The Japanese is a Painter

The Italian drinks Tea

The Norwegian lives in the first house on the left

The owner %f the Green house drinks Coffee Who OV\.IIIS the Zebra?

The Green house is on the right of the White house Who drinks Water?

The Sculptor breeds Snails
The Diplomat lives in the Yellow house

The owner of the middle house drinks Milk

The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice

The Fox is in the house next to the Doctor’s

The Horse is next to the Diplomat’s

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 16 @ WATERLOO

Example 4 - Street Puzzle 1] 21 B] [4] [s

N; = {English, Spaniard, Japanese, Italian, Norwegian}
C; = {Red, Green, White, Yellow, Blue}

D, = {Tea, Coffee, Milk, Fruit-juice, Water}
The Englishman lives in the Red house J; = {Painter, Sculptor, Diplomat, Violinist, Doctor}

(N; = English) < (C; = Red)

The Spaniard has a Dog A; = {Dog, Snails, Fox, Horse, Zebra}
The Japanese is a Painter --------- » (N; = Japanese) < (J; = Painter)

The Italian drinks Tea

The Norwegian lives in the first house on the left --------- » (N, = Norwegian)

The owner of the Green house drinks Coffee (C; = White) < (C,,, = Green)
The Green house is on the right of the White house --------- > | (C. # White)

The Sculptor breeds Snails (C, # Green)

The Diplomat lives in the Yellow house

The owner of the middle house drinks Milk

The Norwegian lives next door to the Blue house ---------- » left as an exercise
The Violinist drinks Fruit juice

The Fox is in the house next to the Doctor’s

The Horse is next to the Diplomat’s

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 17 @ WATERLOO

Example 4 - Street Puzzle 1] 21 B] [4] [s

N; = {English, Spaniard, Japanese, Italian, Norwegian}
C; = {Red, Green, White, Yellow, Blue}

D, = {Tea, Coffee, Milk, Fruit-juice, Water}
The Englishman lives in the Red house J; = {Painter, Sculptor, Diplomat, Violinist, Doctor}

(N; = English) < (C; = Red)

The Spaniard has a Dog A; = {Dog, Snails, Fox, Horse, Zebra}
The Japanese is a Painter --------- » (N; = Japanese) < (J; = Painter)

The Italian drinks Tea

The Norwegian lives in the first house on the left --------- » (N, = Norwegian)

The owner of the Green house drinks Coffee (C; = White) < (C;., = Green)
The Green house is on the right of the White house --------- { (C, # White)

The Sculptor breeds Snails (C, # Green)

The Diplomat lives in the Yellow house

The owner of the middle house drinks Milk

The Norwegian lives next door to the Blue house /

The Violinist drinks Fruit juice unary constraints

The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 18 @ WATERLOO

Example 4 - Street Puzzle 1] 21 B] [4] [s

N; = {English, Spaniard, Japanese, Italian, Norwegian}
C; = {Red, Green, White, Yellow, Blue}
D, = {Tea, Coffee, Milk, Fruit-juice, Water}

The Englishman lives in the Red house J; = {Painter, Sculptor, Diplomat, Violinist, Doctor}
The Spaniard has a Dog A; = {Dog, Snails, Fox, Horse, Zebra}

The Japanese is a Painter

The Italian drinks Tea

The Norwegian lives in the first house on the left

The owner of the Green house drinks Coffee Implicit constraints:

The Green house is on the right of the White house o o

The Sculptor breeds Snails Vijel1,5], 1#), N; # N;
The Diplomat lives in the Yellow house Vi,jel1,5], i#j, C; # C;
The owner of the middle house drinks Milk

The Norwegian lives next door to the Blue house

The Violinist drinks Fruit juice

The Fox is in the house next to the Doctor’s

The Horse is next to the Diplomat’s

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 19 @ WATERLOO

Example 4 - Street Puzzle 1] 21 B] [4] [s

N; = {English, Spaniard, Japanese, Italian, Norwegian}
C; = {Red, Green, White, Yellow, Blue}
D, = {Tea, Coffee, Milk, Fruit-juice, Water}

The Englishman lives in the Red house J; = {Painter, Sculptor, Diplomat, Violinist, Doctor}
The Spaniard has a Dog A; = {Dog, Snails, Fox, Horse, Zebra}

The Japanese is a Painter

The Italian drinks Tea

The Norwegian lives in the first house on the left 2 N, = Norwegian
The owner of the Green house drinks Coffee

The Green house is on the right of the White house

The Sculptor breeds Snails

The Diplomat lives in the Yellow house

The owner of the middle house drinks Milk < D, = Milk

The Norwegian lives next door to the Blue house

The Violinist drinks Fruit juice

The Fox is in the house next to the Doctor’s

The Horse is next to the Diplomat’s

Use inference to
derive new facts

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 20 @ WATERLOO

Example 4 - Street Puzzle 1] 21 B] [4] [s

N; = {English, Spaniard, Japanese, Italian, Norwegian}
C; = {Red, Green, White, Yellow, Blue}
D, = {Tea, Coffee, Milk, Fruit-juice, Water}

The Englishman lives in the Red house = C, # Red J; = {Painter, Sculptor, Diplomat, Violinist, Doctor}

The Spaniard has a Dog 2 A, # Dog A; = {Dog, Snails, Fox, Horse, Zebra}
The Japanese is a Painter
The Italian drinks Tea

The Norwegian lives in the first house on the left 2 N, = Norwegian
The owner of the Green house drinks Coffee

The Green house is on the right of the White house

The Sculptor breeds Snails

The Diplomat lives in the Yellow house

The owner of the middle house drinks Milk < D, = Milk

The Norwegian lives next door to the Blue house

The Violinist drinks Fruit juice = J, # Violinist

The Fox is in the house next to the Doctor’s

The Horse is next to the Diplomat’s

Use inference to
derive new facts

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 21 @ WATERLOO

Example 5 - Scheduling

Four tasks T4, T,, T3, and T, are related by time constraints:
T, must be done during T,
T, must be achieved before T, starts
T, must overlap with T
- T, must start after T, is complete

= Are the constraints compatible?
= What are the possible time relations between two tasks?
= What if the tasks use resources in limited supply?

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 22 @ WATERLOO

Example 6 - 3-Sat

= n Boolean variables, V, ...,V
= K constraints of the form V; v V; vV, where V, is either true or false

= NP-complete

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 23 @ WATERLOO

Properties of CSPs
= Types of variables

= Discrete and finite
= Map colouring, 8-queens, Boolean CSPs

= Discrete variables with infinite domains
= Scheduling jobs in a calendar
= Require a constraint language (Job,; + 3 <Job,)

= Continuous domains
= Scheduling on the Hubble telescope
= Linear programming

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 24 @ WATERLOO

Properties of CSPs

= Types of constraints

= Unary constraint relates a single variable to a value

= Queensland = Blue,SA # Green

= Binary constraint relates two variables
= SA # NSW

= Can use a constraint graph to represent CSPs with only binary constraints

= Higher order constraints involve three of more variables
- AUdiff(Vy, ..., V)

= Can use a constraint hypergraph to represent the problem

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 25 @ WATERLOO

CSPs and search
= N variables V...,V

= Valid assignment: {V, = x4, ..., V,, = x;} for 0 < k <n such that values
satisfy constraints on the variables

= States: valid assignments

= Initial state: empty assignment

= Successor: {V, =x, ...V, =x 32 {Vi = x4, .., Vi = X3, Vi1 = Xt 1}

= Goal test: complete assignment

= If all domains have size d, then there are 0(d") complete assignments

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 26 @ WATERLOO

CSPs and commutativity

= CSPs are commutative!
= The order of application of any given set of actions has no effect on the outcome

= When assigning values to variables we reach the same partial assignment, no
matter the order

= All CSP search algorithms generate successors by considering possible
assignments for only a single variable at each node in the search tree

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 27 @ WATERLOO

CSPs and commutativity

= 3variables V,,V,,V,

= Let the current assignment be A = {V, = x,}

= Pick variable V;

» Let domain of V; be {a, b, c}

= The successors of A are
Vi=x,V;=a}
{V1=x,V3; = b}
Vi=x,V3=c}

UNIVERSITY OF

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 28 Eg WATERLOO

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment,csp) returns a solution, or
failure
if assignment is complete then return assignment
var < SELECT- UNASSIGNED- VARIABLE(Variables/csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment according to Constraints[csp| then
add { var = value } to assignment
result «— RECURSIVE-BACK TRACKING(assignment, csp)
if result # failue then return result
remove { var = value } from assignment
return failure

Depth first search that chooses values for one variable at a time

Backtracks when a variable has no legal values to assign

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 29 @ WATERLOO

Backtracking

NT\

WA\\/

SA NSW T

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 30 @ WATERLOO

Backtracking

WA=blue WA=red WA=green

NT\

WA\\/

SA NSW T

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 31 @ WATERLOO

Backtracking

WA=blue WA=red WA=green

\

N'I'j[ﬂue NT=red NT=green

NT

WA\\/

SA NSW T

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 32 @ WATERLOO

Backtracking

WA=blue WA=red WA=green

\

NT}Eﬂue NT=red NT=green

NT
\ N Q

SA=blue SA=red | | SA=green WA \ \/ T

SA NSW

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 33 @ WATERLOO

Backtracking and efficiency

» Backtracking search is an uninformed search method

= Not very efficient

= We can do better by thinking about the following questions
= Which variable should be assigned next?
= In which order should its values be tried?

= Can we detect inevitable failure early (and avoid same failure in other paths)?

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 34 @ WATERLOO

Most constrained variable

= Choose the variable which has the fewest “legal” moves

= AKA minimum remaining values (MRV) heuristic

&_‘]:_"‘i l;;— "‘H:—"‘Hy:
7 <

Dyr = {green, blue} D, = {blue}

D, = {green, blue} D, = {blue,red}

D yihers = {red, green, blue} D yihers = {red, green, blue}

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 35 @ WATERLOO

Most constraining variable

= Most constraining variable:

= choose the variable with the most constraints on remaining variables

= Tie-breaker among most constrained variables

SOy TRy RS
d

SAis involved in 5 constraints

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 36 @ WATERLOO

Least-constraining value

Given a variable, choose the least constraining value:
— the one that rules out the fewest values in the remaining variables

Allows 1 value for SA

‘\ [% Allows D values for SA

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 37 @ WATERLOO

-‘i 1[: ‘_L,:<

Forward checking

= The third question was

= Is there a way to detect failure early?

» Forward checking

= Keep track of remaining legal values for unassigned variables

= Terminate search when any variable has no legal values

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 38 @ WATERLOO

NT

Forward Checking in Map Coloring

N Q

wal \

Vv
WA [NT |Q NSW |V SA T
RGB |RGB |RGB |RGB |RGB |RGB |RGB

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart

PAGE 39

%1

UNIVERSITY OF

WATERLOO

Forward Checking in Map Coloring

(NTV\Q
SA NSW T

v
WA [NT [Q NSW |V SA |T
RGB |RGB [RGB |RGB [RGB [RGB [RGB
R KB [RGB [RGB [RGB |KGB [RGB

Forward checking removes the value Red of NT and of SA

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart

PAGE 40

%1

UNIVERSITY OF

WATERLOO

Forward Checking in Map Coloring

(NTV\Q
SA Nsw | [T

'
WA [NT [Q NSW |V SA T
RGB |RGB |RGB |RGB |RGB |RGB |RGB
R 6B RGB |RGB |RGB |GB RGB
R ZB G RZB |RGB |¢#B RGB

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 41 @ WATERLOO

-

E -

Forward Checking in Map Coloring

Q

NSW

WA [NT [Q NSW |V SA T
RGB |RGB |RGB |RGB |RGB |RGB |RGB
R 6B RGB |RGB |RGB |GB RGB
R B G RB RGB |B RGB
R B G RE |B X RGB

CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart

PAGE 42

%1

UNIVERSITY OF

WATERLOO

Forward Checking in Map Coloring

Empty set: the current assignment
{((WA<R),(Q «G),(V<«B)}

does not lead to a solution

WA [NT |Q NSW |V SA T
RGB |RGB |RGB |RGB |RGB |RGB| |RGB
R 6B RGB |RGB |RGB |GB RGB
R B G RB RGB |B RGB
R B G RE |B X RGB
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 43 % WR,-IEESRITIIOOFO

<0

Example: 4 Queens

1 2 3 4
1 X1 X2
{1,2,3,4} {1,2,3,4}
2
3
4 X3 X4
{1,2,3,4} {1,2,3,4}

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 44 @ WATE R LOO

Example: 4 Queens

1 2 3 4
1 X1 X2
{1,2,3,4} {1,2,3,4}
2
3
4 X3 X4
{1,2,3,4} {1,2,3,4}

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 45 @ WATE RLOO

Example: 4 Queens

X1 X2
{1,2,3,4} {,,3,4}

X3 X4
{ 92? 94} {)2)37 }

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 46 @ WATE R LOO

Example: 4 Queens

X1 X2
{1,2,3,4} {,,3,4}

X3 X4
{ 92? 94} {)2)37 }

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 47 @ WATE R LOO

Example: 4 Queens

1 2 3 4
1 X1 X2
, {1,2,3,4 {,,3,4)
3
4 X3 X4

{)9 9} {)29)}

No possibilities for X3, backtrack trying different value for X2

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 48 @ WATE R LOO

Example: 4 Queens

X1 X2
{1,2,3,4} {,,3,4}

X3 X4
{ 92? 94} {)2)37 }

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 49 @ WATE R LOO

Example: 4 Queens

X1 X2
{1,2,3,4} {,,3,4}

X3 X4
{)29)} {))3? }

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 50 @ WATE RLOO

Example: 4 Queens

X1 X2
{1,2,3,4} {,,3,4}

X3 X4
{)29 9} {))3? }

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 51 @ WATE RLOO

Example: 4 Queens

1 2 3 4
1 X1 X2
, {1,2,3,4} {,,3,4}
3
4 X3 X4

{)2? 9} { 299 }

No possibilities for X4, backtrack trying different value for X1 S5 UMvERS TY oF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 52 @ WATE RLOO

Example: 4 Queens

1 2 3 4
1 X1 X2
{1,2,3,4} {1,2,3,4}
2
3
4 X3 X4
{1,2,3,4} {1,2,3,4}

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 53 @ WATE RLOO

Example: 4 Queens

X1 X2
{1,2,3,4} {,,,4}

X3 X4
{1,,3, } {1,,3,4}

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 54 @ WATE R LOO

Example: 4 Queens

X1 X2

{1,2,3,4} {,,,4)

X3 X4
{1,,3, } {1,,3,4}

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 55 @ WATE RLOO

Example: 4 Queens

X1 X2

{1,2,3,4} {,,,4)

X3 X4
{17)?} {19)3)}

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 56 @ WATE RLOO

Example: 4 Queens

X1 X2

{1,2,3,4} {,,,4)

X3 X4
{1)7?} {19)3)}

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 57 @ WATE RLOO

Example: 4 Queens

X1 X2

{1,2,3,4} {,,,4)

{1’7?} {)73’}

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 58 @ WATE RLOO

Example: 4 Queens

X1 X2

{1,2,3,4} {,,,4)

{1’7?} {)73’}

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart 59 @ WATE R LOO

Summary

= What you should know
= How to formalize problems as CSPs
= Backtracking search

= Heuristics
= Variable ordering

= Value ordering

= Forward checking

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 4 - Pascal Poupart PAGE 60 @ WATERLOO

