
Lecture 3: Informed Search Techniques
CS486/686 Intro to Artificial Intelligence

Pascal Poupart
David R. Cheriton School of Computer Science

2026-1-13

Outline
§ Using knowledge

§ Heuristics

§ Best-first search
§ Greedy best-first search

§ A* search

§ Other variations of A*

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 2

§ Uninformed search methods expand nodes based on
“distance” from start node
§ Never look ahead to the goal, no domain specific info neded

§ But, we often have some additional knowledge about the
problem
§ E.g. in traveling around Romania we know the distances between

cities so we can measure the overhead of going in the wrong
direction

Recall from last lecture

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 3

Informed Search
§ Our knowledge is often about the merit of nodes

§ Value of being at a node

§ Different notions of merit
§ If we are concerned about the cost of the solution, we might want a notion of

how expensive it is to get from a state to a goal
§ If we are concerned with minimizing computation, we might want a notion of

how easy it is to get from a state to a goal

§ We will focus on cost of solution

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 4

Informed search

§ We need to develop a domain specific heuristic function, ℎ(𝑛)

§ ℎ(𝑛) guesses the cost of reaching the goal from node 𝑛
§ We often have some information about the problem that can be used in forming

a heuristic function (i.e., heuristics are domain specific)

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 5

Informed search

§ If ℎ(𝑛!) < ℎ(𝑛")	then we guess that it is cheaper to reach the goal from
𝑛! than it is from 𝑛"

§ We require
 ℎ(𝑛) = 0 when 𝑛 is a goal node

 ℎ 𝑛 ≥ 	0 for all other nodes

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 6

Greedy best-first search

§ Use the heuristic function, ℎ(𝑛), to rank the nodes in the fringe

§ Search strategy
§ Expand node with lowest ℎ-value

§ Greedily trying to find the least-cost solution

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 7

Greedy best-first search: Example

S CBA G
2 1 1 2

4

h=4 h=3 h=2 h=1 h=0

Path cost

Heuristic
function

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 8

S CBA G
2 1 1 2

4

h=4 h=3 h=2 h=1 h=0

Example continued

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 9

S CBA G
2 1 1 2

4

h=4 h=3 h=2 h=1 h=0

Example continued

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 10

S CBA G
2 1 1 2

4

h=4 h=3 h=2 h=1 h=0

Example continued

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 11

S CBA G
2 1 1 2

4

h=4 h=3 h=2 h=1 h=0

Example continued

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 12

S CBA G
2 1 1 2

4

h=4 h=3 h=2 h=1 h=0

Found the goal

Path is S, A, C, G

Cost of the path is 2+4+2=8

But cheaper path is S, A, B, C, G

With cost 2+1+1+2=6

Greedy best-first is not optimal

Example continued

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 13

C

G
2

S BA
2 1

h=4 h=3 h=4

h=1

h=0

1
1

Another Example

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 14

C

G
2

S BA
2 1

h=4 h=3 h=4

h=1

h=0

1
1

Greedy best-first can get stuck in loops

Not complete

Another Example

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 15

Properties of greedy search
§ Not optimal!

§ Not complete!
§ If we check for repeated states then we are ok

§ Exponential space in worst case since need to keep all
nodes in memory

§ Exponential worst case time 𝑂(𝑏#) where 𝑚 is the
maximum depth of the tree
§ If we choose a good heuristic then we can do much better

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 16

§ Greedy best-first search is too greedy
§ It does not take into account the cost of the path so far!

§ Define 𝒇(𝒏) = 𝒈(𝒏) + 𝒉(𝒏)
 𝑔(𝑛) is the cost of the path to node n
 ℎ(𝑛) is the heuristic estimate of cost of reaching goal from node 𝑛

§ A* search
§ Expand node in fringe (queue) with lowest 𝑓 value

A* Search

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 17

A* Example

S CBA G
2 1 1 2

4

h=4 h=3 h=2 h=1 h=0

1. Expand S
2. Expand A
3. Choose between B (f(B)=3+2=5) and C (f(C)=6+1=7)) expand B
4. Expand C
5. Expand G – recognize it is the goal

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 18

When should A* terminate?
§ As soon as we find a goal state?

S

A

B

C

G

h=2

h=3

h=7

1 1

1

7

D h=1
7

1

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 19

When should A* terminate?
§ As soon as we find a goal state?

S

A

B

C

G

h=2

h=3

h=7

1 1

1

7

D h=1
7

1

A* terminates only when goal state is popped from the queue

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 20

Is A* Optimal?

S

A

G

1 1

3

h=6

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 21

Is A* Optimal?

S

A

G

1 1

3

h=6

No. This example shows why not.

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 22

Admissible heuristics
§ Let ℎ∗(𝑛) denote the true minimal cost to the goal from node 𝑛

§ A heuristic, ℎ, is admissible if
 ℎ 𝑛 ≤ 	ℎ∗(𝑛) for all 𝑛

§ Admissible heuristics never overestimate the cost to the goal
§ Optimistic

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 23

If the heuristic is admissible then A* with tree-search is optimal
Let 𝐺 be an optimal goal state, and 𝑓(𝐺) 	= 𝑓∗ = 	𝑔(𝐺).
Let 𝐺" be a suboptimal goal state, i.e., 𝑓(𝐺") 	= 	𝑔(𝐺") 	> 	𝑓∗.
Assume for contradiction that A* selects 𝐺" from queue. (A* terminates with suboptimal solution)
Let 𝑛 be a node that is currently a leaf node on an optimal path to 𝐺.

Since ℎ is admissible, 𝑓∗ ≥ 𝑓(𝑛).
If 𝑛 is not chosen for expansion over 𝐺", we must have 𝑓(𝑛)	³	𝑓(𝐺")
So 𝑓∗	³	𝑓(𝐺2). Because ℎ(𝐺") = 0, we have 𝑓∗ ≥ 𝑔(𝐺"), contradiction.

Optimality of A*

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 24

A* and revisiting states
What if we revisit a state that was already expanded?

S

A B

C

G

1

h=3

h=2

h=7

1

1

7

2

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 25

A* and revisiting states
What if we revisit a state that was already expanded?

S

A B

C

G

1

h=3

h=2

h=7

1

1

7

2

If we allow states to be expanded again, we might get a better solution!

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 26

Optimality of A*

§ To search graphs, we need something stronger than admissibility
§ Consistency (monotonicity): ℎ 𝑛 ≤ 𝑐𝑜𝑠𝑡 𝑛, 𝑛’ + ℎ 𝑛’ 	 ∀𝑛, 𝑛’

§ Almost any admissible heuristic function will also be consistent

§ A* graph-search with a consistent heuristic is optimal

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 27

Properties of A*

§ Complete (assuming finite branching factor and positive
costs)
§ Along any path, 𝑓 will eventually increase and the algorithm will eventually try

all paths. Hence a solution will be found if there exists one.

§ Exponential time complexity in worst case
§ A good heuristic will help a lot here

§ 𝑂(𝑏𝑚) if the heuristic is perfect

§ Exponential space complexity

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 28

§ A* keeps most generated nodes in memory
§ On many problems A* will run out of memory

§ Iterative deepening A* (IDA*)
§ Like IDS, but change 𝑓-cost rather than depth at each iteration

§ SMA* (Simplified Memory-Bounded A*)
§ Uses all available memory
§ Proceeds like A* but when it runs out of memory it drops the worst leaf node (one

with highest 𝑓-value)
§ If all leaf nodes have the same 𝑓-value then it drops oldest and expands the newest
§ Optimal and complete if depth of shallowest goal node is less than memory size

Memory-bounded heuristic search

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 29

Heuristic Functions

§ A good heuristic function can make all the difference!

§ How do we get heuristics?
§ One approach is to think of an easier problem and let ℎ(𝑛) be the cost of

reaching the goal in the easier problem

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 30

8-puzzle

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 31

8-puzzle

1. Can move tile from position A to position B if A is
next to B (ignore whether or not position is blank)

2. Can move tile from position A to position B if B is
blank (ignore adjacency)

3. Can move tile from position A to position B

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 32

Relax the game:

8-puzzle continued
§ 3) leads to misplaced tile heuristic

§ To solve this problem need to move each tile into its final position

§ Number of moves = number of misplaced tiles

§ Admissible

§ 1) leads to manhattan distance heuristic
§ To solve the puzzle need to slide each tile into its final position

§ Admissible

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 33

8-puzzle continued

§ ℎ1 = misplaced tiles

§ ℎ! = manhattan distance

§ Note ℎ! dominates ℎ1
 ℎ" 𝑛 ≤ 	ℎ#(𝑛) for all 𝑛

 Which heuristic is best?

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 34

Designing heuristics

§ Relaxing the problem (as just illustrated)

§ Precomputing solution costs of subproblems and storing them in a
pattern database

§ Learning from experience with the problem class

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 35

Conclusion

§ What you should now know
§ Thoroughly understand A* and IDA*

§ Be able to trace simple examples of A* and IDA* execution

§ Understand admissibility and consistency of heuristics

§ Proof of completeness, optimality

§ Criticize greedy best-first search

CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 36

