Lecture 3: Informed Search Techniques
CS486/686 Intro to Artificial Intelligence

Pascal Poupart
David R. Cheriton School of Computer Science

%’ WATERLOO



Outline

= Using knowledge

» Heuristics

= Best-first search
= Greedy best-first search
= A* search

= Other variations of A*

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 2 @ WATE RLOO



Recall from last lecture

= Uninformed search methods expand nodes based on

“distance” from start node
= Never look ahead to the goal, no domain specific info neded

= But, we often have some additional knowledge about the

problem
= E.g. in traveling around Romania we know the distances between
cities so we can measure the overhead of going in the wrong
direction

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 3 @ WATE RLOO



Informed Search

= Our knowledge is often about the merit of nodes
= Value of being at a node

= Different notions of merit
= If we are concerned about the cost of the solution, we might want a notion of
how expensive it is to get from a state to a goal
= If we are concerned with minimizing computation, we might want a notion of
how easy it is to get from a state to a goal

= We will focus on cost of solution

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 4 @ WATE RLOO



Informed search

= We need to develop a domain specific heuristic function, h(n)

= h(n) guesses the cost of reaching the goal from node n

= We often have some information about the problem that can be used in forming
a heuristic function (i.e., heuristics are domain specific)

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 5 @ WATE RLOO



Informed search

= If h(n,) < h(n,) then we guess that it is cheaper to reach the goal from
n, than it is from n,

= We require
h(n) = 0 when n is a goal node

h(n) = 0 for all other nodes

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 6 @ WATE RLOO



Greedy best-first search

» Use the heuristic function, h(n), to rank the nodes in the fringe

= Search strategy

= Expand node with lowest h-value

= Greedily trying to find the least-cost solution

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 7 @ WATE RLOO



Greedy best-first search: Example

Heuristic
function
/
h=4 h=3 h=2 h=1 h=0
S d A .\ B { C 4 G
Path cost

4

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 8 @ WATE RLOO



Example continued

h=4 h=3 h=2 h=1 h=0

[«]
|
!
!
!

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 9 @ WATE RLOO



Example continued

@

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 10 @ WATERLOO



Example continued

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 11 @ WATERLOO



Example continued

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 12 @ WATERLOO



Example continued

‘ Greedy best-first is not optimal ‘

h=4 h=3 h=2 h=1 h=0
5
2
Found the goal

But cheaper pathis S, A, B, C, G
Pathis S, A, C, G

With cost 2+1+1+2=6
Cost of the path is 2+4+2=8

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 13 @ WATERLOO



Another Example

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 14 @ WATERLOO



Another Example

‘ Not complete ‘

Greedy best-first can get stuck in loops

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 15 @ WATERLOO



Properties of greedy search

= Not optimal!

= Not complete!

= If we check for repeated states then we are ok

= Exponential space in worst case since need to keep all
nodes in memory

= Exponential worst case time O(b™) where m is the
maximum depth of the tree

= If we choose a good heuristic then we can do much better

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 16 @ WATERLOO



A* Search

= Greedy best-first search is too greedy
= It does not take into account the cost of the path so far!

= Define  f(n) = g(n) + h(n)
g(n) is the cost of the path to node n
h(n) is the heuristic estimate of cost of reaching goal from node n

= A¥* search
= Expand node in fringe (queue) with lowest f value

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 17 @ WATERLOO



A* Example

h=4 h=3 h=2 h=1 h=0
S » A » B » C G
4
1. Expand S
2. Expand A
3. Choose between B (f(B)=3+2=5) and C (f(C)=6+1=7) ) expand B
4. Expand C

5. Expand G — recognize it is the goal

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 18 @ WATERLOO



When should A* terminate?

= As soon as we find a goal state?

D

7 W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 19 @ WATERLOO




When should A* terminate?

= As soon as we find a goal state?

A* terminates only when goal state is popped from the queue

1 S 1
\B h=3

h=7 A 1

D

7 w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 20 @ WATERLOO




Is A* Optimal?

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 21 @ WATERLOO



Is A* Optimal?

h=6

No. This example shows why not.

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 22 @ WATERLOO



Admissible heuristics

= Let h*(n) denote the true minimal cost to the goal from node n

= A heuristic, h, is admissible if

h(n) < h*(n) for alln

= Admissible heuristics never overestimate the cost to the goal

= Optimistic

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 23 @ WATERLOO



Optimality of A*

If the heuristic is admissible then A* with tree-search is optimal

Let G be an optimal goal state, and f(G) = f* = g(G).

Let G, be a suboptimal goal state, i.e., f(G,) = g(Gy,) > f*.

Assume for contradiction that A* selects G, from queue. (A* terminates with suboptimal solution)
Let n be a node that is currently a leaf node on an optimal path to G.

Srcire

M,\AW\M,

’z
G @ G2

Since h is admissible, f* = f(n).
If n is not chosen for expansion over G,, we must have f(n) > f(G,)
So f* > f(G,). Because h(G,) = 0, we have f* > g(G,), contradiction.

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 24 @ WATERLOO



A* and revisiting states

What if we revisit a state that was already expanded?

h=7 A

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 25 @ WATERLOO



A* and revisiting states

What if we revisit a state that was already expanded?

G 7

If we allow states to be expanded again, we might get a better solution!

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 26 @ WATERLOO



Optimality of A*

= To search graphs, we need something stronger than admissibility
= Consistency (monotonicity): h(n) < cost(n,n’) + h(n’) vn,n’

= Almost any admissible heuristic function will also be consistent

= A* graph-search with a consistent heuristic is optimal

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 27 @ WATERLOO



Properties of A*

= Complete (assuming finite branching factor and positive
costs)

= Along any path, f will eventually increase and the algorithm will eventually try
all paths. Hence a solution will be found if there exists one.

= Exponential time complexity in worst case
= A good heuristic will help a lot here

= 0(bm) if the heuristic is perfect

= Exponential space complexity

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 28 @ WATERLOO



Memory-bounded heuristic search

= A* keeps most generated nodes in memory
= On many problems A* will run out of memory

= Iterative deepening A* (IDA*)
= Like IDS, but change f-cost rather than depth at each iteration

« SMA* (Simplified Memory-Bounded A¥*)
= Uses all available memory
= Proceeds like A* but when it runs out of memory it drops the worst leat node (one
with highest f-value)
= If all leaf nodes have the same f-value then it drops oldest and expands the newest
= Optimal and complete if depth of shallowest goal node is less than memory size

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 29 @ WATERLOO



Heuristic Functions

= A good heuristic function can make all the difference!

= How do we get heuristics?

= One approach is to think of an easier problem and let h(n) be the cost of
reaching the goal in the easier problem

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 30 @ WATERLOO



8-puzzle

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
Start State Goal State

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 31 @ WATE RLOO



8-puzzle
7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8
Start State Goal State

Relax the game: 1. Can move tile from position A to position B if A is
next to B (ignore whether or not position is blank)
2. Can move tile from position A to position B if B is
blank (ignore adjacency)
3. Can move tile from position A to position B

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 32 @ WATERLOO



8-puzzle continued

= 3) leads to misplaced tile heuristic

= To solve this problem need to move each tile into its final position

= Number of moves = number of misplaced tiles

= Admissible

= 1) leads to manhattan distance heuristic

= To solve the puzzle need to slide each tile into its final position

= Admissible

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 33 @ WATERLOO



8-puzzle continued

-h3

misplaced tiles

= h, = manhattan distance

= Note h; dominates h;
hz3(n) < hy(n) foralln
Which heuristic is best?

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 34 @ WATERLOO



Designing heuristics

= Relaxing the problem (as just illustrated)

= Precomputing solution costs of subproblems and storing them in a
pattern database

» Learning from experience with the problem class

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 35 @ WATERLOO



Conclusion

= What you should now know
= Thoroughly understand A* and IDA*
= Be able to trace simple examples of A* and IDA* execution
= Understand admissibility and consistency of heuristics
= Proof of completeness, optimality

= Criticize greedy best-first search

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 3 - Pascal Poupart PAGE 36 @ WATERLOO



