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Outline

= Problem solving agents and search
= Properties of search algorithms

» Uninformed search

= Breadth first
= Depth first

= [terative Deepening
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Introduction

= Search was one of the first topics studied in Al

= Newell and Simon (1961) General Problem Solver

= Central component to many Al systems

= Automated reasoning, theorem proving, path planning in robotics and
autonomous driving, VLSI layout, scheduling, game playing,...
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Problem-solving agents

function SIMPLE-PROBLEM-SOLVING-AGENT( percept) returns an action
static: seg, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state <— UPDATE-STATE( state, percept)

if seqis empty then do
goal — FORMULATE-GOAL(state)
problem <+ FORMULATE-PROBLEM( state, goal)
seq < SEARCH( problem)

action < FIRST( seq)

seq < REST(seq)

return action
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Example: Traveling in Romania

Startss

Arad L

118 L) Vaslui

= Timisoara

Pitesti

98

Hirsova

LJ Mehadia Urziceni

75 86

Dobreta Ll

Bucharest

% End

L] Giurgiu

Craiova Eforie
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Formulate Goal
Get to Bucharest

Formulate Problem

Initial state: In(Arad)

Actions: Drive between cities
Goal Test: In(Bucharest)?

Path cost: Distance between cities

Find a solution

Sequence of cities: Arad,
Sibiu, Fagaras, Bucharest
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Example: 8-Tile Puzzle

States: Locations of 8 tiles and blank

Initial State: Any state

Succ Func: Generates legal states that

5 6 3 4 5 result from trying 4 actions (blank up,
down, left, right)

Goal test: Does state match desired
8 3 1 6 7 8 configuration

Path cost: Number of steps
Start State Goal State
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Example: 8-queen problem

States: Arrangement of 0 to 8 queens on the
board

Initial State: No queens on the board
Succ Func: Add a queen to an empty space
Goal test: 8 queens on board, none attacked

Path cost: none
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More Examples
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Common Characteristics

= All of those examples are
= Fully observable
= Deterministic
= Sequential
= Static
= Discrete

= Single agent

= Can be tackled by simple search techniques
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Cannot tackle these problems yet...

Chance Infinite number of states Games against
an adversary

PO !\ ER] Hidden states

.”
S 1» All of the
* above
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Searching

= We can formulate a search problem

= Now need to find the solution

= We can visualize a state space search in terms of trees or graphs
= Nodes correspond to states

= Edges correspond to taking actions

= We will be studying search trees

= These trees are constructed “on the fly” by our algorithms
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Data Structures for Search

= Basic data structure: Search Node

= State
= Parent node and operator applied to parent to reach Q
current noae

= Cost of the path so far
= Depth of the node

ACTION = righi

5 4 NOde DEPTH = 6
PATH- COST =6

6 1 8

7 3 2
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Expanding Nodes

» Expanding a node

= Applying all legal
operators to the
state contained in
the node and
generating nodes
for all
corresponding
successor states
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(a) The initial state

T Ar

(c) After expanding Sibiu
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Generic Search Algorithm

1. Initialize search algorithm with initial state of the problem

2. Repeat
1. If no candidate nodes can be expanded, return failure
2. Choose leaf node for expansion, according to search strategy
3. If node contains a goal state, return solution

4. Otherwise, expand the node, by applying legal operators to the state
within the node. Add resulting nodes to the tree
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Implementation Details

=  We need to keep track only of nodes that need to be expanded (fringe)
=  Done by using a (prioritized) queue

1. Initialize queue by inserting the node corresponding to the initial state
of the problem

2. Repeat

If queue is empty, return failure

Dequeue a node

If the node contains a goal state, return solution

Otherwise, expand node by applying legal operators to the state within. Insert
resulting nodes into queue

sl

Search algorithms differ in their queuing function!
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Breadth-first search

All nodes on a D@
given level are

expanded before

any node on the

next level is

expanded.

Implemented with
a FIFO queue A
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Evaluating search algorithms

= Completeness: Is the algorithm guaranteed to find a solution if a

solution exists?
= Optimality: Does the algorithm find the optimal solution (lowest

path cost of all solutions)?
 Time complexity
= Space complexity

b | Branching factor
d |Depth of shallowest goal node

Variables

m | Maximum length of any path in the state space
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.
Judging BFS

= Complete: Yes, if b is finite

» Optimal: Yes, if all costs are the same
 Time: 1+b+b2+b3+...+bd = O(bd)

» Space: O(bd)

All uninformed search methods will have exponential time complexity ®
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Uniform Cost Search

= Variation of breadth-

first search
= Instead of expanding
shallowest node, it
expands the node with
lowest path cost
» Implemented using a
priority queue

C* is cost of optimal solution
€ 1s minimum action cost
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Figure 3.13 A route-finding problem. (a) The state space, showing the cost for each operator
(b) Progression of the search. Each node is labelled with g(n). At the next step, the goal node
with g = 10 will be selected.

Time: Q(beeiling(C*/e))
Space: O(bceiling(C*/a ))

Optimal: Yes
Complete: ifg> 0
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Depth-first search

The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)

O
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Depth-first search

The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)
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Depth-first search

The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)
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Depth-first search

The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)
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Depth-first search

The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)
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Depth-first search

The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)
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Judging DFS

= Complete? No, might get stuck going down a long path

= Optimal? No, might return a solution which is deeper
(i.e. more costly) than another solution

= Time: O(b™), m might be larger than d

= Space: O(bm) ©
Do not use DFS if you suspect a large tree depth
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Depth-limited Search

= We can avoid the problem of unbounded trees
by using a depth limit,
= All nodes at depth [ as though they have no successors
= If possible, choose [ based on knowledge of the problem

» Time: O(b)

= Space: O(bl)
= Complete? No
= Optimal? No
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Iterative-deepening

Limit=0 @

« General strategy |umi-1
that repeatedly

does depth_ Limit=2 @
limited search, ./\. /<\
but increases the |

<o W . Limit=3 @
limit each time

Four iterations of iterative deepening search on a binary tree.
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Iterative-deepening

IDS is not as wasteful as one might think.

Note, most nodes in a tree are at the bottom level. It does not matter if nodes
at a higher level are generated multiple times.

Breadth first search :
1T+b+Db%+ ... +bd!+pd

E.g. b=10, d=5: 1+10+100+1,000+10,000+100,000 = 111,111

Iterative deepening search :
(d+1)*1 + (d)*b + (d-1)*b% + ... + 2b%d-1 + 1pd
E.g. 6+50+400+3000+20,000+100,000 = 123,456

Complete, Optimal, O(b9) time, O(bd) space
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Summary

= Problem formulation usually requires abstracting away real-world details to
define a state space that can feasibly be explored

= Variety of uninformed search strategies
= Assume no knowledge about the problem (general but expensive)

= Mainly differ in the order in which they consider the states

Criteria BFS Uniform DFS DLS IDS

Complete Yes Yes No No Yes
Time O(bd) O(bceiling(Ce)) O(b™m) O(b") O(bd)
Space O(bd) O(beeiling(C72)) | O(bm) O(bl) O(bd)

Optimal Yes Yes No No Yes
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Summary

= Jterative deepening uses only linear space and not much more time
than other uninformed search algorithms

= Use IDS when there is a large state space and the maximum depth of the
solution is unknown

= Things to think about:
= What about searching graphs?

= Repeated states?
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