
Lecture 2: Uninformed Search Techniques
CS486/686 Intro to Artificial Intelligence

Pascal Poupart
David R. Cheriton School of Computer Science

2026-1-8

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 2

Outline

§ Problem solving agents and search

§ Properties of search algorithms

§ Uninformed search
§ Breadth first

§ Depth first

§ Iterative Deepening

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 3

Introduction

§ Search was one of the first topics studied in AI
§ Newell and Simon (1961) General Problem Solver

§ Central component to many AI systems
§ Automated reasoning, theorem proving, path planning in robotics and

autonomous driving, VLSI layout, scheduling, game playing,…

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 4

Problem-solving agents

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 5

Start

End

Formulate Goal
Get to Bucharest

Formulate Problem
Initial state: In(Arad)
Actions: Drive between cities
Goal Test: In(Bucharest)?
Path cost: Distance between cities

Find a solution
Sequence of cities: Arad,
Sibiu, Fagaras, Bucharest

Example: Traveling in Romania

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 6

States: Locations of 8 tiles and blank

Initial State: Any state

Succ Func: Generates legal states that
result from trying 4 actions (blank up,
down, left, right)

Goal test: Does state match desired
configuration

Path cost: Number of steps

Example: 8-Tile Puzzle

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 7

States: Arrangement of 0 to 8 queens on the
board

Initial State: No queens on the board

Succ Func: Add a queen to an empty space

Goal test: 8 queens on board, none attacked

Path cost: none

Example: 8-queen problem

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 8

More Examples

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 9

Common Characteristics
§ All of those examples are

§ Fully observable
§ Deterministic
§ Sequential
§ Static
§ Discrete
§ Single agent

§ Can be tackled by simple search techniques

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 10

Cannot tackle these problems yet…
Games against
an adversary

Chance Infinite number of states

Hidden states

All of the
above

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 11

Searching
§ We can formulate a search problem

§ Now need to find the solution

§ We can visualize a state space search in terms of trees or graphs
§ Nodes correspond to states

§ Edges correspond to taking actions

§ We will be studying search trees
§ These trees are constructed “on the fly” by our algorithms

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 12

Data Structures for Search

§ Basic data structure: Search Node
§ State
§ Parent node and operator applied to parent to reach

current node
§ Cost of the path so far
§ Depth of the node

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 13

§ Expanding a node
§ Applying all legal

operators to the
state contained in
the node and
generating nodes
for all
corresponding
successor states

Expanding Nodes

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 14

Generic Search Algorithm

1. Initialize search algorithm with initial state of the problem

2. Repeat
1. If no candidate nodes can be expanded, return failure

2. Choose leaf node for expansion, according to search strategy

3. If node contains a goal state, return solution

4. Otherwise, expand the node, by applying legal operators to the state
within the node. Add resulting nodes to the tree

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 15

§ We need to keep track only of nodes that need to be expanded (fringe)
§ Done by using a (prioritized) queue

1. Initialize queue by inserting the node corresponding to the initial state
of the problem

2. Repeat
1. If queue is empty, return failure
2. Dequeue a node
3. If the node contains a goal state, return solution
4. Otherwise, expand node by applying legal operators to the state within. Insert

resulting nodes into queue

Search algorithms differ in their queuing function!

Implementation Details

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 16

Breadth-first search

All nodes on a
given level are
expanded before
any node on the
next level is
expanded.

Implemented with
a FIFO queue A B,C C,D,E D,E,F,G

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 17

Evaluating search algorithms

§ Completeness: Is the algorithm guaranteed to find a solution if a
solution exists?

§ Optimality: Does the algorithm find the optimal solution (lowest
path cost of all solutions)?

§ Time complexity
§ Space complexity

b Branching factor
d Depth of shallowest goal node

m Maximum length of any path in the state spaceVa
ria

bl
es

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart 18

§ Complete:

§ Optimal:

§ Time:

§ Space:

All uninformed search methods will have exponential time complexity L

Judging BFS

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 19

Yes, if b is finite

Yes, if all costs are the same

1+b+b2+b3+…+bd = O(bd)

O(bd)

§ Variation of breadth-
first search
§ Instead of expanding

shallowest node, it
expands the node with
lowest path cost

§ Implemented using a
priority queue

Optimal:
Complete:

Time:
Space:

C* is cost of optimal solution
e is minimum action cost

Uniform Cost Search

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 20

Yes
if e > 0

O(bceiling(C*/e))
O(bceiling(C*/e))

Depth-first search
The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 21

Depth-first search
The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 22

Depth-first search
The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 23

Depth-first search
The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 24

Depth-first search
The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 25

Depth-first search
The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 26

§ Complete?

§ Optimal?

§ Time:

§ Space:

Do not use DFS if you suspect a large tree depth

Judging DFS

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 27

No, might get stuck going down a long path

O(bm) J

No, might return a solution which is deeper
(i.e. more costly) than another solution

O(bm), m might be larger than d

§ We can avoid the problem of unbounded trees
by using a depth limit, 𝑙
§ All nodes at depth	𝑙	as though they have no successors
§ If possible, choose	𝑙	based on knowledge of the problem

§ Time:
§ Space:
§ Complete?
§ Optimal?

Depth-limited Search

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 28

O(bl)
O(bl)

No
No

§ General strategy
that repeatedly
does depth-
limited search,
but increases the
limit each time

Iterative-deepening

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 29

Breadth first search :
1 + b + b2 + … + bd-1 + bd
E.g. b=10, d=5: 1+10+100+1,000+10,000+100,000 = 111,111

Iterative deepening search :
(d+1)*1 + (d)*b + (d-1)*b2 + … + 2bd-1 + 1bd
E.g. 6+50+400+3000+20,000+100,000 = 123,456

Complete, Optimal, O(bd) time, O(bd) space

IDS is not as wasteful as one might think.

Note, most nodes in a tree are at the bottom level. It does not matter if nodes
at a higher level are generated multiple times.

Iterative-deepening

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 30

§ Problem formulation usually requires abstracting away real-world details to
define a state space that can feasibly be explored

§ Variety of uninformed search strategies
§ Assume no knowledge about the problem (general but expensive)

§ Mainly differ in the order in which they consider the states

Criteria BFS Uniform DFS DLS IDS

Complete Yes Yes No No Yes
Time O(bd) O(bceiling(C*/e)) O(bm) O(bl) O(bd)
Space O(bd) O(bceiling(C*/e)) O(bm) O(bl) O(bd)
Optimal Yes Yes No No Yes

Summary

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart 31

§ Iterative deepening uses only linear space and not much more time
than other uninformed search algorithms
§ Use IDS when there is a large state space and the maximum depth of the

solution is unknown

§ Things to think about:
§ What about searching graphs?

§ Repeated states?

Summary

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 32

