Lecture 2: Uninformed Search Techniques
CS486/686 Intro to Artificial Intelligence

Pascal Poupart
David R. Cheriton School of Computer Science

%’ WATERLOO

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 2 K@\ WATERLOO

Outline

= Problem solving agents and search
= Properties of search algorithms

» Uninformed search

= Breadth first
= Depth first

= [terative Deepening

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 3 @ WATE RLOO

Introduction

= Search was one of the first topics studied in Al

= Newell and Simon (1961) General Problem Solver

= Central component to many Al systems

= Automated reasoning, theorem proving, path planning in robotics and
autonomous driving, VLSI layout, scheduling, game playing,...

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 4 @ WATE RLOO

Problem-solving agents

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
static: seg, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state <— UPDATE-STATE(state, percept)

if seqis empty then do
goal — FORMULATE-GOAL(state)
problem <+ FORMULATE-PROBLEM(state, goal)
seq < SEARCH(problem)

action < FIRST(seq)

seq < REST(seq)

return action

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 5 @ WATE RLOO

Example: Traveling in Romania

Startss

Arad L

118 L) Vaslui

= Timisoara

Pitesti

98

Hirsova

LJ Mehadia Urziceni

75 86

Dobreta Ll

Bucharest

% End

L] Giurgiu

Craiova Eforie

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 6

Formulate Goal
Get to Bucharest

Formulate Problem

Initial state: In(Arad)

Actions: Drive between cities
Goal Test: In(Bucharest)?

Path cost: Distance between cities

Find a solution

Sequence of cities: Arad,
Sibiu, Fagaras, Bucharest

%’ WATERLOO

Example: 8-Tile Puzzle

States: Locations of 8 tiles and blank

Initial State: Any state

Succ Func: Generates legal states that

5 6 3 4 5 result from trying 4 actions (blank up,
down, left, right)

Goal test: Does state match desired
8 3 1 6 7 8 configuration

Path cost: Number of steps
Start State Goal State

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 7 @ WATE RLOO

Example: 8-queen problem

States: Arrangement of 0 to 8 queens on the
board

Initial State: No queens on the board
Succ Func: Add a queen to an empty space
Goal test: 8 queens on board, none attacked

Path cost: none

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 8 @ WATE RLOO

More Examples

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart

PAGE 9

',' \
\ e wers wrzs °/r,m~ .

© 2004 Yahoo! Inc @ 2004 GDT Inc .~

2 WATERLOO

Common Characteristics

= All of those examples are
= Fully observable
= Deterministic
= Sequential
= Static
= Discrete

= Single agent

= Can be tackled by simple search techniques

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 10 @ WATERLOO

Cannot tackle these problems yet...

Chance Infinite number of states Games against
an adversary

PO !\ ER] Hidden states

.”
S 1» All of the
* above
% UNIVERSITY OF

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 11 @ WATE RLOO

Searching

= We can formulate a search problem

= Now need to find the solution

= We can visualize a state space search in terms of trees or graphs
= Nodes correspond to states

= Edges correspond to taking actions

= We will be studying search trees

= These trees are constructed “on the fly” by our algorithms

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 12 @ WATERLOO

Data Structures for Search

= Basic data structure: Search Node

= State
= Parent node and operator applied to parent to reach Q
current noae

= Cost of the path so far
= Depth of the node

ACTION = righi

5 4 NOde DEPTH = 6
PATH- COST =6

6 1 8

7 3 2

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 13 @ WATERLOO

Expanding Nodes

» Expanding a node

= Applying all legal
operators to the
state contained in
the node and
generating nodes
for all
corresponding
successor states

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart

(a) The initial state

T Ar

(c) After expanding Sibiu

AGE 14 %’ WATERLOO

Generic Search Algorithm

1. Initialize search algorithm with initial state of the problem

2. Repeat
1. If no candidate nodes can be expanded, return failure
2. Choose leaf node for expansion, according to search strategy
3. If node contains a goal state, return solution

4. Otherwise, expand the node, by applying legal operators to the state
within the node. Add resulting nodes to the tree

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 15 @ WATERLOO

Implementation Details

= We need to keep track only of nodes that need to be expanded (fringe)
= Done by using a (prioritized) queue

1. Initialize queue by inserting the node corresponding to the initial state
of the problem

2. Repeat

If queue is empty, return failure

Dequeue a node

If the node contains a goal state, return solution

Otherwise, expand node by applying legal operators to the state within. Insert
resulting nodes into queue

sl

Search algorithms differ in their queuing function!
UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 16 % WATE RLOO

Breadth-first search

All nodes on a D@
given level are

expanded before

any node on the

next level is

expanded.

Implemented with
a FIFO queue A

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart

PAGE 17

B,C

N

UNIVERSITY OF

WATERLOO

Evaluating search algorithms

= Completeness: Is the algorithm guaranteed to find a solution if a

solution exists?
= Optimality: Does the algorithm find the optimal solution (lowest

path cost of all solutions)?
 Time complexity
= Space complexity

b | Branching factor
d |Depth of shallowest goal node

Variables

m | Maximum length of any path in the state space

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart 18 @ WATERLOO

.
Judging BFS

= Complete: Yes, if b is finite

» Optimal: Yes, if all costs are the same
 Time: 1+b+b2+b3+...+bd = O(bd)

» Space: O(bd)

All uninformed search methods will have exponential time complexity ®

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 19 @ WATERLOO

Uniform Cost Search

= Variation of breadth-

first search
= Instead of expanding
shallowest node, it
expands the node with
lowest path cost
» Implemented using a
priority queue

C* is cost of optimal solution
€ 1s minimum action cost

CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart

" / P i
e A f/ Y c®
C | 15
C® C@®
11
(b)
Figure 3.13 A route-finding problem. (a) The state space, showing the cost for each operator
(b) Progression of the search. Each node is labelled with g(n). At the next step, the goal node
with g = 10 will be selected.

Time: Q(beeiling(C*/e))
Space: O(bceiling(C*/a))

Optimal: Yes
Complete: ifg> 0

AGE 26 %’ WATERLOO

Depth-first search

The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)

O

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 21 @ WATERLOO

Depth-first search

The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 22 @ WATERLOO

Depth-first search

The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 23 @ WATERLOO

Depth-first search

The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 24 @ WATERLOO

Depth-first search

The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 25 @ WATERLOO

Depth-first search

The deepest node in the current fringe of the search tree is expanded first.

Implemented with a stack (LIFO queue)

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 26 @ WATERLOO

Judging DFS

= Complete? No, might get stuck going down a long path

= Optimal? No, might return a solution which is deeper
(i.e. more costly) than another solution

= Time: O(b™), m might be larger than d

= Space: O(bm) ©
Do not use DFS if you suspect a large tree depth

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 27 @ WATERLOO

Depth-limited Search

= We can avoid the problem of unbounded trees
by using a depth limit,
= All nodes at depth [as though they have no successors
= If possible, choose [based on knowledge of the problem

» Time: O(b)

= Space: O(bl)
= Complete? No
= Optimal? No

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 28 @ WATERLOO

Iterative-deepening

Limit=0 @

« General strategy |umi-1
that repeatedly

does depth_ Limit=2 @
limited search, ./\. /<\
but increases the |

<o W . Limit=3 @
limit each time

Four iterations of iterative deepening search on a binary tree.

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 29 @ WATERLOO

Iterative-deepening

IDS is not as wasteful as one might think.

Note, most nodes in a tree are at the bottom level. It does not matter if nodes
at a higher level are generated multiple times.

Breadth first search :
1T+b+Db%+ ... +bd!+pd

E.g. b=10, d=5: 1+10+100+1,000+10,000+100,000 = 111,111

Iterative deepening search :
(d+1)*1 + (d)*b + (d-1)*b% + ... + 2b%d-1 + 1pd
E.g. 6+50+400+3000+20,000+100,000 = 123,456

Complete, Optimal, O(b9) time, O(bd) space

w UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 30 @ WATERLOO

Summary

= Problem formulation usually requires abstracting away real-world details to
define a state space that can feasibly be explored

= Variety of uninformed search strategies
= Assume no knowledge about the problem (general but expensive)

= Mainly differ in the order in which they consider the states

Criteria BFS Uniform DFS DLS IDS

Complete Yes Yes No No Yes
Time O(bd) O(bceiling(Ce)) O(b™m) O(b") O(bd)
Space O(bd) O(beeiling(C72)) | O(bm) O(bl) O(bd)

Optimal Yes Yes No No Yes

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart 31 @ WATE RLOO

Summary

= Jterative deepening uses only linear space and not much more time
than other uninformed search algorithms

= Use IDS when there is a large state space and the maximum depth of the
solution is unknown

= Things to think about:
= What about searching graphs?

= Repeated states?

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 2 - Pascal Poupart PAGE 32 @ WATERLOO

