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Outline

= Deep Neural Networks

= Gradient Vanishing
» Rectified linear units

= Overfitting
= Dropout

= Breakthroughs
= Acoustic modeling in speech recognition
= Image recognition
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Deep Neural Networks

= Definition: neural network with many hidden layers

= Advantage: high expressivity
= Challenges:

= How should we train a deep neural network?

= How can we avoid overfitting?
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Expressiveness

= Neural networks with one hidden layer of sigmoid/hyperbolic units
can approximate arbitrarily closely neural networks with several layers
of sigmoid/hyperbolic units

= However as we increase the number of layers, the number of units
needed may decrease exponentially (with the number of layers)
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Example - Parity Function

= Single layer of hidden nodes
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Example - Parity Function

= 2n — 2 layers of hidden nodes
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The power of depth (practice)

Deep neural
networks learn
hierarchical feature
representations

= Challenge:
how to train
deep NNs?
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Speech

= 2006 (Hinton, al.): first effective algorithm for deep NN

= layerwise training of Stacked Restricted Boltzmann Machines (SRBM)s
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Speech

= 2006 (Hinton, al.): first effective algorithm for deep NN
= layerwise training of Stacked Restricted Boltzmann Machines (SRBM)s
= 2009: Breakthrough in acoustic modeling

= replace Gaussian Mixture Models by SRBMs

= Improved speech recognition at Google, Microsoft, IBM
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Speech

= 2006 (Hinton, al.): first effective algorithm for deep NN

= layerwise training of Stacked Restricted Boltzmann Machines (SRBM)s

= 2009: Breakthrough in acoustic modeling
= replace Gaussian Mixture Models by SRBMs

= Improved speech recognition at Google, Microsoft, IBM

= 2013-2019: recurrent neural nets (LSTM)
= Google error rate: 23% (2013) =2 8% (2015)

= Microsoft error rate: 5.9% (Oct 17, 2016) same as human performance
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Image Classification
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Image Classification

Features + SVMs  Deep Convolutional Neural Nets
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Image Classification

Features + SVMs  Deep Convolutional Neural Nets
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Vanishing Gradients

= Deep neural networks of sigmoid and hyperbolic units often suffer
from vanishing gradients

small medium large
gradient gradient  gradient
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Sigmoid and hyperbolic units

= Derivatives are always less than 1

Sigmoid vs Tanh
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From Aidan Wilson (https://a-i-dan.github.io/math_nn)
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Simple Example

y=0 (W4 o (W3 O'(Wz o(w; x))))

Common weight initialization in (-1,1)
Sigmoid function and its derivative always less than 1
This leads to vanishing gradients:

9y

Y~ 5'(ag)o(as)
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dy , , As products of
ows  © (ay)wyo’(az)a(az) factors less
9y than 1 gets longer,
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Avoiding Vanishing Gradients

= Several popular solutions:
» Pre-training
= Rectified linear units
= SKkip connections

= Batch normalization
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Rectified Linear Units
From Abhinav Ralhan (https://medium.com/@abhinavr8/
activation-functions-neural-networks-66220238e1ff)
= Rectifier (ReLU): h(a) = max(0,a) ° = '
= Gradient is 0 or 1 o
= Sparse computation .

1(x)

= Soft version
(“Softplus”) :

h(a) =log(1 + e%)
. -!3 3 & 0 1 2 z
= Warning: softplus does not X
prevent gradient vanishing (gradient < 1)
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Overfitting

= High expressivity increases the risk of overfitting

= # of parameters is often larger than the amount of data

= Some solutions:
= Regularization
= Dropout

= Data augmentation
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Dropout

» Idea: randomly “drop” some units from the network when training

= Training: at each iteration of gradient descent

= Each input unit is dropped with probability p; (e.g., 0.2)
= Each hidden unit is dropped with probability p, (e.g., 0.5)

= Prediction (testing):
= Multiply each input unit by 1 — p,
= Multiply each hidden unit by 1 — p,
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Dropout lllustration
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Dropout Algorithm

Training: let ©® denote elementwise multiplication
= Repeat
= For each training example (x,,, y,,) do

= Sample z,(f) from Bernoulli(1 —p)¥for1 <1 <L
= Neural network with dropout applied:

ez W) = h (W<L> [ , (W(z) [h1 (W<1) lfnGZg)]) ® 27(12)]) O zglm])

= Loss: Err (Y, fn(Xpn, Z; W)
JErr
awkj

= Update: wy; « wy; — 17
= End for
= Until convergence

Prediction: f(x,; W) = (WD [... R,(WD[h, (W[, (1 - p]) 1 —p2)]) - (1 —p)])
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Intuition

= Dropout can be viewed as an approximate form of ensemble learning

= In each training iteration, a different subnetwork is trained

= At test time, these subnetworks are “merged” by averaging their
weights
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Early Applications of Deep Neural Networks

Speech Recognition

Image recognition

Machine translation

Control
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Acoustic Modeling in Speech Recognition

A comparison of the Percentage Word Error Rates using DNN-HMMs and GMM-HMMs on five different large vocabulary tasks.

Architecture of a DNN-HMM hybrid
system

Transition Probabilities

TABLE III

' task hoursof | DNN-HMM | GMM-HMM | GMM-HMM -
training data with same data | with more data

Switchboard (test set 1) | 309 18.5 274 18.6 (2000 hrs)
Switchboard (test set 2) | 309 16.1 23.6 17.1 (2000 hrs) K Observation

. T W Probabilities
English Broadcast News | 50 17.5 18.8 = M
Bing Voice Search 24 30.4 36.2

DNN
(Sentence error rates) 1"
Google Voice Input 5,870 123 160 (>>5870hrs) [ W,
Youtube 1,400 476 523 ’/,;_;_,;\
R 4 4 L : - iObservation
DUCYVHES “Ha S eV HEE R |
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Image Recognition

= Convolutional Neural Network
= With rectified linear units and dropout
= Data augmentation for transformation invariance
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ImageNet Breakthrough

= Results: ILSVRC-2012
= From Krizhevsky, Sutskever, Hinton

Model Top-1 (val) | Top-5 (val) | Top-5 (test)
SIFT + FVs [7] — 26.2%

I CNN 40.7% 18.2% —

5 CNNs 38.1% 16.4% 16.4%

I CNN* 39.0% 16.6% -

7 CNNs* 36.7% 15.4% 15.3%

Table 2: Comparison of error rates on ILSVRC-2012 validation and
test sets. In italics are best results achieved by others. Models with an

asterisk* were “pre-trained” to classify the entire ImageNet 2011 Fall
release. See Section 6 for details.
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ImageNet Breakthrough

From Krizhevsky, Sutskever, Hinton

agaric
mushroom spider monkey
Jjelly fungus titi £
gill fungus |ffordshire bullterrier Indri | |’ ’
dead-man's-fingers currant howler monkey | Iy

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.
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