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Outline

§ Deep Neural Networks
§ Gradient Vanishing

§ Rectified linear units
§ Overfitting

§ Dropout

§ Breakthroughs
§ Acoustic modeling in speech recognition
§ Image recognition
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Deep Neural Networks
§ Definition: neural network with many hidden layers

§ Advantage: high expressivity

§ Challenges:
§ How should we train a deep neural network?

§ How can we avoid overfitting?
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Expressiveness

§ Neural networks with one hidden layer of sigmoid/hyperbolic units 
can approximate arbitrarily closely neural networks with several layers 
of sigmoid/hyperbolic units

§ However as we increase the number of layers, the number of units 
needed may decrease exponentially (with the number of layers)
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Example – Parity Function

§ Single layer of hidden nodes
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Example – Parity Function

§ 2𝑛 − 2 layers of hidden nodes
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§ Challenge: 
how to train 
deep NNs?

The power of depth (practice)
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§ 2006 (Hinton, al.): first effective algorithm for deep NN 
§ layerwise training of Stacked Restricted Boltzmann Machines (SRBM)s

Speech
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§ 2006 (Hinton, al.): first effective algorithm for deep NN 
§ layerwise training of Stacked Restricted Boltzmann Machines (SRBM)s

§ 2009: Breakthrough in acoustic modeling
§ replace Gaussian Mixture Models by SRBMs

§ Improved speech recognition at Google, Microsoft, IBM

Speech
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§ 2006 (Hinton, al.): first effective algorithm for deep NN 
§ layerwise training of Stacked Restricted Boltzmann Machines (SRBM)s

§ 2009: Breakthrough in acoustic modeling
§ replace Gaussian Mixture Models by SRBMs

§ Improved speech recognition at Google, Microsoft, IBM

§ 2013-2019: recurrent neural nets (LSTM)
§ Google error rate: 23% (2013) à 8% (2015)

§ Microsoft error rate: 5.9% (Oct 17, 2016) same as human performance

Speech
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§ ImageNet Large 
Scale Visual 
Recognition 
Challenge
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Vanishing Gradients

§ Deep neural networks of sigmoid and hyperbolic units often suffer 
from vanishing gradients

large 
gradient

medium 
gradient

small 
gradient
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Sigmoid and hyperbolic units

§ Derivatives are always less than 1
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From Aidan Wilson (https://a-i-dan.github.io/math_nn)



Simple Example
§ 𝑦 = 𝜎 𝑤9	𝜎 𝑤:	𝜎 𝑤;	𝜎 𝑤<	𝑥

§ Common weight initialization in (-1,1)
§ Sigmoid function and its derivative always less than 1
§ This leads to vanishing gradients:
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As products of 
factors less 
than 1 gets longer, 
gradient vanishes
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Avoiding Vanishing Gradients

§ Several popular solutions:
§ Pre-training

§ Rectified linear units

§ Skip connections

§ Batch normalization

CS486/686 Winter 2026 - Lecture 12 - Pascal Poupart PAGE  17



Rectified Linear Units

§ Rectifier (ReLU): ℎ 𝑎 = max(0, 𝑎)
§ Gradient is 0 or 1
§ Sparse computation

§ Soft version
   (“Softplus”) :
    ℎ 𝑎 = log(1 + 𝑒()

§ Warning: softplus does not 
prevent gradient vanishing (gradient < 1) 

CS486/686 Winter 2026 - Lecture 12 - Pascal Poupart PAGE  18

From Abhinav Ralhan (https://medium.com/@abhinavr8/
activation-functions-neural-networks-66220238e1ff)



Overfitting

§ High expressivity increases the risk of overfitting
§ # of parameters is often larger than the amount of data

§ Some solutions: 
§ Regularization

§ Dropout

§ Data augmentation
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Dropout

§ Idea: randomly “drop” some units from the network when training

§ Training: at each iteration of gradient descent
§ Each input unit is dropped with probability 𝑝< (e.g., 0.2)
§ Each hidden unit is dropped with probability 𝑝; (e.g., 0.5)

§ Prediction (testing):
§ Multiply each input unit by 1 − 𝑝<
§ Multiply each hidden unit by 1 − 𝑝;
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Dropout Illustration
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Dropout Algorithm

Training: let ⨀ denote elementwise multiplication
§ Repeat

§ For each training example (𝒙!, 𝑦!) do
§ Sample 𝒛%

(')	from 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 1 − 𝑝' )!  for 1 ≤ 𝑙 ≤ 𝐿
§ Neural network with dropout applied:

          𝑓) 𝒙) , 𝒛);𝑾 = ℎ* 𝑾 + …ℎ' 𝑾 ' ℎ( 𝑾 ( *𝒙)⨀𝒛)
( ⨀𝒛)

' …⨀𝒛)
+  

§ Loss: 𝐸𝑟𝑟(𝑦% , 𝑓%(𝒙% , 𝒛%;𝑾)

§ Update: 𝑤)* ← 𝑤)* − 𝜂
+,--
+."#

§ End for
§ Until convergence
Prediction: 𝑓 𝒙!;𝑾 = ℎ" 𝑾 # …ℎ$ 𝑾 $ ℎ% 𝑾 % )𝒙!(1 − 𝑝% 1 − 𝑝$ …(1 − 𝑝#)  
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Intuition

§ Dropout can be viewed as an approximate form of ensemble learning

§ In each training iteration, a different subnetwork is trained

§ At test time, these subnetworks are “merged” by averaging their 
weights
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Early Applications of Deep Neural Networks

§ Speech Recognition

§ Image recognition

§ Machine translation

§ Control
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Acoustic Modeling in Speech Recognition
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Image Recognition

§ Convolutional Neural Network
§ With rectified linear units and dropout
§ Data augmentation for transformation invariance
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ImageNet Breakthrough

§ Results: ILSVRC-2012
§ From Krizhevsky, Sutskever, Hinton
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ImageNet Breakthrough
• From Krizhevsky, Sutskever, Hinton
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