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Outline

§ Deep Neural Networks
§ Gradient Vanishing

§ Rectified linear units
§ Overfitting

§ Dropout

§ Breakthroughs
§ Acoustic modeling in speech recognition
§ Image recognition
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Deep Neural Networks
§ Definition: neural network with many hidden layers

§ Advantage: high expressivity

§ Challenges:
§ How should we train a deep neural network?

§ How can we avoid overfitting?
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Expressiveness

§ Neural networks with one hidden layer of sigmoid/hyperbolic units 
can approximate arbitrarily closely neural networks with several layers 
of sigmoid/hyperbolic units

§ However as we increase the number of layers, the number of units 
needed may decrease exponentially (with the number of layers)
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Example – Parity Function

§ Single layer of hidden nodes
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Example – Parity Function

§ 2" − 2 layers of hidden nodes
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§ Challenge: 
how to train 
deep NNs?

The power of depth (practice)
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§ 2006 (Hinton, al.): first effective algorithm for deep NN 
§ layerwise training of Stacked Restricted Boltzmann Machines (SRBM)s

Speech
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§ 2006 (Hinton, al.): first effective algorithm for deep NN 
§ layerwise training of Stacked Restricted Boltzmann Machines (SRBM)s

§ 2009: Breakthrough in acoustic modeling
§ replace Gaussian Mixture Models by SRBMs

§ Improved speech recognition at Google, Microsoft, IBM

Speech
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§ 2006 (Hinton, al.): first effective algorithm for deep NN 
§ layerwise training of Stacked Restricted Boltzmann Machines (SRBM)s

§ 2009: Breakthrough in acoustic modeling
§ replace Gaussian Mixture Models by SRBMs

§ Improved speech recognition at Google, Microsoft, IBM

§ 2013-2019: recurrent neural nets (LSTM)
§ Google error rate: 23% (2013) à 8% (2015)

§ Microsoft error rate: 5.9% (Oct 17, 2016) same as human performance

Speech
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§ ImageNet Large 
Scale Visual 
Recognition 
Challenge
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§ ImageNet Large 
Scale Visual 
Recognition 
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§ ImageNet Large 
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Vanishing Gradients

§ Deep neural networks of sigmoid and hyperbolic units often suffer 
from vanishing gradients

large 
gradient

medium 
gradient

small 
gradient
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Sigmoid and hyperbolic units

§ Derivatives are always less than 1
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From Aidan Wilson (https://a-i-dan.github.io/math_nn)




















































Simple Example
§ ! = # $9	# $:	# $;	# $<	&

§ Common weight initialization in (-1,1)
§ Sigmoid function and its derivative always less than 1
§ This leads to vanishing gradients:
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As products of 
factors less 
than 1 gets longer, 
gradient vanishes
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Avoiding Vanishing Gradients

§ Several popular solutions:
§ Pre-training

§ Rectified linear units

§ Skip connections

§ Batch normalization
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Rectified Linear Units

§ Rectifier (ReLU): ℎ % = max(0, %)
§ Gradient is 0 or 1
§ Sparse computation

§ Soft version
   (“Softplus”) :
    ℎ % = log(1 + 3()

§ Warning: softplus does not 
prevent gradient vanishing (gradient < 1) 
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From Abhinav Ralhan (https://medium.com/@abhinavr8/
activation-functions-neural-networks-66220238e1ff)




















































Overfitting

§ High expressivity increases the risk of overfitting
§ # of parameters is often larger than the amount of data

§ Some solutions: 
§ Regularization

§ Dropout

§ Data augmentation
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Dropout

§ Idea: randomly “drop” some units from the network when training

§ Training: at each iteration of gradient descent
§ Each input unit is dropped with probability '< (e.g., 0.2)
§ Each hidden unit is dropped with probability '; (e.g., 0.5)

§ Prediction (testing):
§ Multiply each input unit by 1 − '<
§ Multiply each hidden unit by 1 − ';
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Dropout Illustration
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Dropout Algorithm

Training: let ⨀ denote elementwise multiplication
§ Repeat

§ For each training example ("!, $!) do
§ Sample !%(')	from #$%&'())* 1 − -' )!  for 1 ≤ ) ≤ /
§ Neural network with dropout applied:

          !) ") , $);& = ℎ* & + …ℎ' & ' ℎ( & ( *")⨀$)( ⨀$)' …⨀$)+  
§ Loss: 0%%(2% , 4%(5% , !%;7)
§ Update: 9)* ← 9)* − ; +,--+."#

§ End for
§ Until convergence
Prediction: " #!;% = ℎ" % # …ℎ$ % $ ℎ% % % )#!(1 − -% 1 − -$ …(1 − -#)  
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Intuition

§ Dropout can be viewed as an approximate form of ensemble learning

§ In each training iteration, a different subnetwork is trained

§ At test time, these subnetworks are “merged” by averaging their 
weights
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Early Applications of Deep Neural Networks

§ Speech Recognition

§ Image recognition

§ Machine translation

§ Control
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Acoustic Modeling in Speech Recognition
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Image Recognition

§ Convolutional Neural Network
§ With rectified linear units and dropout
§ Data augmentation for transformation invariance
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ImageNet Breakthrough

§ Results: ILSVRC-2012
§ From Krizhevsky, Sutskever, Hinton
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ImageNet Breakthrough
• From Krizhevsky, Sutskever, Hinton
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