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Outline

= Neural networks
= Perceptron

= Supervised learning algorithms for neural networks
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Artificial Neural Networks

» Idea: mimic the brain to do computation

» Artificial neural network:

= Nodes (a.k.a. units) correspond to neurons

= Links correspond to synapses

= Computation:

* Numerical signal transmitted between nodes corresponds
to chemical signals between neurons

= Nodes modifying numerical signal corresponds to neurons firing rate
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ANN Unit

For each unit 1:

= Weights: W
= Strength of the link from unit i to unit j
= Input signals x; weighted by W; and linearly combined:

aj =zVI/]lxl+VVJO=W]§
[

« Activation function: h

* Numerical signal produced: y; = h(a;)
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ANN Unit

= Picture
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Activation Function

= Should be nonlinear

= Otherwise, network is just a linear function

= Often chosen to mimic firing in neurons
= Unit should be “active” (output near 1) when fed with the “right” inputs

= Unit should be “inactive” (output near 0) when fed with the “wrong” inputs
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Common Activation Functions

Threshold Sigmoid
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Logic Gates

= McCulloch and Pitts (1943)

= Design ANNSs to represent Boolean functions

= What should be the weights of the following units to code AND, OR,
NOT ?

AND OR NOT
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Network Structures

» Feed-forward network
= Directed acyclic graph
= No internal state

= Simply computes outputs from inputs

 Recurrent network
= Directed cyeclic graph
= Dynamical system with internal states

» Can memorize information
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Feed-forward network

= Simple network with two inputs, one hidden layer of two units, one
output unit
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Perceptron

= Single layer feed-forward network
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Threshold Perceptron Hypothesis Space

= Hypothesis space h,,:
= All binary classifications with parameters w s.t.
wlix>0- +1
wix <0 - -1

» Since w!x is linear in w, perceptron is called a linear separator
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Linear Separability

= Are all Boolean gates linearly separable?
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Sigmoid Perceptron

= Represent “soft” linear separators

Perceptron output
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Multilayer Networks

= Adding two sigmoid units with parallel but opposite “cliffs”
produces a ridge

Network output
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Multilayer Networks
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Multilayer Networks

= By tiling bumps of various heights together, we can approximate
any function.

= Theorem: Neural networks with at least one hidden layer of
sufficiently many sigmoid units can approximate any function
arbitrarily closely.
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Common activation functions h

Threshold: h(a) = {_11 Z i 8

1
1+e~ 4

Sigmoid: h(a) = g(a) =

1/a—pu\?
Gaussian: h(a) = e_E(T)

eld+ea

Tanh: h(a) = tanh(a) =

Identity: h(a) = a
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.
Weight training

« Parameters: < WO w®@ >

= Objectives:
= Error minimization
= Backpropagation (aka “backprop”)
= Maximum likelihood
= Maximum a posteriori

= Bayesian learning
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Least squared error

» Error function

1 1 2
EW) =5 ) En(W)? == ) [If Gt W) = 1l

where x,, is the input of the n*"* example

y,, is the label of the nt" example

f (x,,, W) 1s the output of the neural net
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Sequential Gradient Descent

= For each example (x,,, y,,) adjust the weights as follows:
0E,
d le‘

Wji < Wi —1

= How can we compute the gradient efficiently given an arbitrary
network structure?

= Answer: backpropagation algorithm

» Today: automatic differentiation
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Backpropagation Algorithm

= Two phases:

» Forward phase: compute output z; of each unit j

= Backward phase: compute delta §; at each unit j
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Forward phase

= Propagate inputs forward to compute the output of each unit
* Output z; at unit j:

Zj — h(a]) where aj = Zi W;jiZ;
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Backward phase

= Use chain rule to recursively compute gradient

0E, _ 0E, 0a;
ale' - 0aj aWji

* For each weight w;;: = 6z

= Let§; = — En then

aa]
h’(aj)(zj — yj) base case: j is an output unit
J |l (@) 2 w6, recursion: jis a hidden unit

6a]

= Since a; = Y,; wj;z; then —— = z;

owjj
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Simple Example

= Consider a network with two layers:

ea_e—a

» Hidden nodes: h(a) = tanh(a) = I

» Tip: tanh'(a) = 1 — (tanh(a))?

= Qutput node: h(a) = a

= Objective: squared error
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Simple Example

= Forward propagation:

» Hidden units: aj = zj =

= QOutput units: a; = Z
= Backward propagation:

= Qutput units: 6, =

« Hidden units: §; =

» Gradients:

O,

ale' -
OE,

aij

= Hidden layers:

= Qutput layer:
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Non-linear regression examples

= Two-layer network:

= 3 tanh hidden units and 1 identity output unit

y = sinx

x
y = |x| y=j 5(t)dt
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Analysis

= Efficiency:

= Fast gradient computation: linear in number of weights

= Convergence:

= Slow convergence (linear rate)

= May get trapped in local optima

= Prone to overfitting

= Solutions: early stopping, regularization (add ||w| |§ penalty term to objective),
dropout
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