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Outline

§ Neural networks
§ Perceptron

§ Supervised learning algorithms for neural networks
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Neuron
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Artificial Neural Networks
§ Idea: mimic the brain to do computation

§ Artificial neural network:
§ Nodes (a.k.a. units) correspond to neurons
§ Links correspond to synapses

§ Computation:
§ Numerical signal transmitted between nodes corresponds 

to chemical signals between neurons
§ Nodes modifying numerical signal corresponds to neurons firing rate
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ANN Unit
For each unit i:

§ Weights: 𝑾
§ Strength of the link from unit 𝑖 to unit 𝑗
§ Input signals 𝑥𝑖 weighted by 𝑊𝑗𝑖 and linearly combined:  

𝑎𝑗	 = (
!

𝑊"! 	𝑥! +𝑊"# = 𝑾𝒋 +𝒙

§ Activation function: 𝒉
§ Numerical signal produced: 𝑦" = ℎ(𝑎") 
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ANN Unit
§ Picture
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Activation Function

§ Should be nonlinear
§ Otherwise, network is just a linear function

§ Often chosen to mimic firing in neurons
§ Unit should be “active” (output near 1) when fed with the “right” inputs

§ Unit should be “inactive” (output near 0) when fed with the “wrong” inputs
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Common Activation Functions

Threshold Sigmoid
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Logic Gates
§ McCulloch and Pitts (1943)

§ Design ANNs to represent Boolean functions

§ What should be the weights of the following units to code AND, OR, 
NOT ?
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Network Structures

§ Feed-forward network
§ Directed acyclic graph
§ No internal state
§ Simply computes outputs from inputs

§ Recurrent network
§ Directed cyclic graph

§ Dynamical system with internal states
§ Can memorize information
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Feed-forward network

§ Simple network with two inputs, one hidden layer of two units, one 
output unit
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Perceptron

§ Single layer feed-forward network

CS486/686 Winter 2026 - Lecture 11 - Pascal Poupart PAGE  12



Threshold Perceptron Hypothesis Space

§ Hypothesis space ℎ𝒘:
§ All binary classifications with parameters 𝒘 s.t.

      𝒘𝑻$𝒙 > 0 → +1
     𝒘𝑻$𝒙 < 0 → −1

§ Since 𝒘𝑻#𝒙 is linear in 𝒘, perceptron is called a linear separator
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Linear Separability

§ Are all Boolean gates linearly separable?
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Sigmoid Perceptron 

§ Represent “soft” linear separators
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Multilayer Networks 

§ Adding two sigmoid units with parallel but opposite “cliffs” 
produces a ridge
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Multilayer Networks 

§ Adding two intersecting ridges (and thresholding) produces a bump
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Multilayer Networks 

§ By tiling bumps of various heights together, we can approximate 
any function.

§ Theorem:  Neural networks with at least one hidden layer of 
sufficiently many sigmoid units can approximate any function 
arbitrarily closely.
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Common activation functions ℎ

§ Threshold: ℎ 𝑎 = & 1 𝑎 ≥ 0
−1 𝑎 < 0

§ Sigmoid: ℎ 𝑎 = 𝜎 𝑎 = !
!"#%&

§ Gaussian: ℎ 𝑎 = 𝑒$
'
(
&%)
*

(

§ Tanh: ℎ 𝑎 = tanh 𝑎 = #&$#%&

#&"#%&

§ Identity: ℎ 𝑎 = 𝑎
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Weight training
§ Parameters: < 𝑾 # ,𝑾 $ , … >

§ Objectives:
§ Error minimization

§ Backpropagation (aka “backprop”)

§ Maximum likelihood

§ Maximum a posteriori

§ Bayesian learning
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Least squared error
§ Error function

𝐸 𝑾 =
1
2
.
%

𝐸% 𝑾 $ =
1
2
.
%

𝑓 𝒙𝒏,𝑾 − 𝑦% $
$

where 𝒙𝒏 is the input of the 𝑛'( example

             𝑦% is the label of the 𝑛'( 	example

             𝑓 𝒙𝒏,𝑾  is the output of the neural net
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Sequential Gradient Descent 
§ For each example (𝒙% , 𝑦%) adjust the weights as follows:

𝑤)* ← 𝑤)* − 𝜂
𝜕𝐸%
𝜕𝑤)*

§ How can we compute the gradient efficiently given an arbitrary 
network structure?

§ Answer: backpropagation algorithm

§ Today: automatic differentiation
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Backpropagation Algorithm
§ Two phases:

§ Forward phase: compute output 𝑧" of each unit 𝑗

§ Backward phase: compute delta 𝛿" at each unit 𝑗
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Forward phase
§ Propagate inputs forward to compute the output of each unit

§ Output 𝑧)  at unit 𝑗:

  𝑧" = ℎ 𝑎"     where    a# = ∑$𝑤#$𝑧$
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Backward phase
§ Use chain rule to recursively compute gradient

§ For each weight 𝑤"#: 
$%!
$&"#

= $%!
$'"

$'"
$&"#

= 𝛿"𝑧#

§ Let 𝛿" ≡
$%!
$'"

 then

           𝛿" = 3
ℎ′(𝑎") 𝑧" − 𝑦"
ℎ′(𝑎")∑(𝑤("𝛿(

	 base	case: 	𝑗	is	an	output	unitrecursion: 	𝑗	is	a	hidden	unit

§ Since 𝑎" = ∑#𝑤"#𝑧# then $'"
$&"#

= 𝑧#
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Simple Example

§ Consider a network with two layers:

§ Hidden nodes: ℎ 𝑎 = tanh 𝑎 = )$*)%$

)$+)%$

§ Tip: 𝑡𝑎𝑛ℎ% 𝑎 = 1 − (𝑡𝑎𝑛ℎ 𝑎 )&	

§ Output node: ℎ 𝑎 = 𝑎

§ Objective: squared error
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Simple Example
§ Forward propagation: 

§ Hidden units: 𝑎& =                            𝑧& =

§ Output units: 𝑎' =                           𝑧' =

§ Backward propagation:
§ Output units: 𝛿' =

§ Hidden units: 𝛿& =

§ Gradients:

§ Hidden layers: ()!
(*"#

=

§ Output layer: ()!
(*$"

=
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Non-linear regression examples
§ Two-layer network: 

§ 3 tanh hidden units and 1 identity output unit

𝑦 = 𝑥! 𝑦 = sin 𝑥

𝑦 = |𝑥| 𝑦 = 3
"#

$
𝛿 𝑡 𝑑𝑡
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Analysis
§ Efficiency: 

§ Fast gradient computation: linear in number of weights

§ Convergence: 
§ Slow convergence (linear rate)

§ May get trapped in local optima

§ Prone to overfitting

§ Solutions: early stopping, regularization (add 𝑤 +
+ penalty term to objective), 

dropout 
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