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Outline

= Neural networks
= Perceptron

= Supervised learning algorithms for neural networks
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Artificial Neural Networks

= Idea: mimic the brain to do computation

= Artificial neural network:
= Nodes (a.k.a. units) correspond to neurons

= Links correspond to synapses

= Computation:

= Numerical signal transmitted between nodes corresponds
to chemical signals between neurons

= Nodes modifying numerical signal corresponds to neurons firing rate
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ANN Unit

For each unit 1:

= Weights: W
= Strength of the link from unit i to unit j

« Input signals x; weighted by W ;; and linearly co

a :Zsz
[

= Activation function: h

» Numerical signal produced: y; = h(a;)
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ANN Unit
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Activation Function

= Should be nonlinear

= Otherwise, network is just a linear function

= Often chosen to mimic firing in neurons
= Unit should be “active” (output near 1) when fed with the “right” inputs

= Unit should be “inactive” (output near 0) when fed with the “wrong” inputs
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Common Activation Functions

Threshold Sigmoid
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Logic Gates = Wel £ W% +\WN, %,

Q
: /Z(ox) — O & s 0
= McCulloch and Pitts (1943) - | -

= Design ANNSs to represent Boolean functions

= What should be the weights of the following units to code AND, OR,
NOT ?

AND OR NOT
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Network Structures

» Feed-forward network
= Directed acyclic graph
= No internal state

= Simply computes outputs from inputs

» Recurrent network
= Directed cyclic graph
= Dynamical system with internal states

» Can memorize information
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Feed-forward network

= Simple network with two inputs, one hidden layer of tv/éo units, one
output unit —) Rayon
( W /é

Sigd
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Perceptron

= Single layer feed-forward network
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Threshold Perceptron Hypothesis Space

= Hypothesis space h,,:
= All binary classifications with parameters w s.t.
wlix >0- +1
wlix<0- -1

» Since w!x is linear in w, perceptron is called a linear separator
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Linear Separability

= Are all Boolean gates linearly separable?
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Sigmoid Perceptron

= Represent “soft” linear separators

=
X

N
W
N

N
N

N

N

NN

‘s§§\~g‘.~
W

RN

N

N
R
N
NN
W
N
\

Perceptron output

NN

N
N

A

NN
NN
NN
NN
N \

N

X

NN
N

X

S

—_
N

X
N

N
=

1

NN
=

N

N

N

=

N
.

N\
N
R
\\Q\

A
RN
N\
i
N
S
NN

N

N
N

=

S

N

N\
\

AR
NN
LYARARY
RN
\‘\3\%\\
NS

\

W\
\

\

7V
A7)

—

NN
X

UNIVERSITY OF
WATERLOO

PAGE 15

CS486/686 Winter 2026 - Lecture 11 - Pascal Poupart



Multilayer Networks

= Adding two sigmoid units with parallel but opposite “cliffs”

produces a ridge f
f Network output /”;’;”; =
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Multilayer Networks

Network output

idges (and thresholding) produces a bump

tersecting r
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Multilayer Networks

= By tiling bumps of various heights together, we can approximate
any function.

et

= Theorem: Neural networks with at least one hidden layer of
sufficiently many sigmoid units can approximate any function
arbitrarily closely.
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Common activation functions h

1 a=0

= Threshold: h(a) = {_1 a<0

1

Sigmoid: h(a) = o(a) =

1+e—a g\(«) -
Y.<

Gaussian: h(a) = e 2\ o
Tanh: h(a) = tanh(a) = ZZ::Z |

- -
Identity: h(a) = a ~t
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-
Weight training

« Parameters: < W, w®@ >

= Objectives:
= Error minimization
= Backpropagation (aka “backprop”)
= Maximum likelihood
= Maximum a posteriori

= Bayesian learning
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Least squared error

MS WA X
» Error function /’ p e i
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where x,, is the input of the nt"* example
y,, is the label of the nt" example

f (x,,, W) is the output of the neural net
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Sequential Gradient Descent

= For each example (x,,, y,,) adjust the weights as follows:

A\ aEn
Em Wi < Wi y
Wji

W °J&J°
= How can we compute the gradient efficiently given an arbitrary
network structure?

= Answer: backpropagation algorithm

= Today: automatic differentiation
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Backpropagation Algorithm

= Two phases:

» Forward phase: compute output z; of each unit j

[ I
Xy Z, 7.

= Backward phase: compute delta §; at each unit j

S, Ss
9. { S —
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Forward phase

= Propagate inputs forward to compute the output of each unit
= Output z; at unit j:

Zj — h(a]) where a; = ZiniZi

W UNIVERSITY OF
CS486/686 Winter 2026 - Lecture 11 - Pascal Poupart PAGE 24 @ WATE RLOO



Backward phase

= Use chain rule to recursively compute gradient

. OE 0E, 0a;
= For each weight w;;: — = ——L =
J aW]l 6a] aW]l

25,

= Let §; = 2, then
5 = h’(aj)(zj — yj) base case: j is an output unit
/ . e ] .
h'(a;) X wg ;0 Tecursion: jisa hidden unit
S. . h aaj .
= >dSince (lj = ZiniZi then m = Zj
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Simple Example

= Consider a network with two layers:

= Hidden nodes: h(a) = tanh(a) =
» Tip: tanh'(a) = 1 — (tanh(a))?

= Qutput node: h(a) = a

= Objective: squared error
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Simple Example

= Forward propagation:

= Hidden units: a; = f \MQ‘A s % =‘l‘a~”\)\ ( mo-\
= Qutput units: aq;, = i wk,) Z. %= O\&

- Backward propagatién: 4
= Output units: §, = Zg ~ My,

« Hidden units: §; = ([ - Z) i w,{,) S,b_

= Gradients:

= S %e =~(1-s, )ﬁw% Se X
- 5& 4 —(Zf(-%') Z;
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Non-linear regression examples

= Two-layer network:

= 3 tanh hidden units and 1 identity output unit

y =sinx

X
y = |x| y=f 5(t)dt
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Analysis

= Efficiency:

= Fast gradient computation: linear in number of weights

= Convergence:
= Slow convergence (linear rate)

= May get trapped in local optima

= Prone to overfitting

= Solutions: early stopping, regularization (add ||w/| |2 penalty term to objective),
dropout
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