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Outline

§ Statistical learning
§ Bayesian learning

§ Maximum a posteriori

§ Maximum likelihood

§ Learning from complete Data
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Statistical Learning

§ View: we have uncertain knowledge of the world

§ Idea: learning simply reduces this uncertainty
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Candy Example
§ Favorite candy sold in two flavors:

§ Lime (hugh)
§ Cherry (yum)

§ Same wrapper for both flavors
§ Sold in bags with different ratios:

§ 100% cherry
§ 75% cherry + 25% lime
§ 50% cherry + 50% lime
§ 25% cherry + 75% lime
§ 100% lime
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Candy Example

§ You bought a bag of candy but don’t know its flavor ratio

§ After eating k candies:
§ What’s the flavor ratio of the bag?

§ What will be the flavor of the next candy?

CS486/686 Winter 2026 - Lecture 10 - Pascal Poupart PAGE  5



Statistical Learning
§ Hypothesis H: probabilistic theory of the world

§ h1: 100% cherry
§ h2: 75% cherry + 25% lime
§ h3: 50% cherry + 50% lime
§ h4: 25% cherry + 75% lime
§ h5: 100% lime

§ Data D: evidence about the world
§ d1: 1st candy is cherry
§ d2: 2nd candy is lime
§ d3: 3rd candy is lime
§ …
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Bayesian Learning
§ Prior: Pr(H)

§ Likelihood: Pr(d|H)

§ Evidence: d = <d1,d2,…,dn>

§ Bayesian Learning amounts to computing the posterior using Bayes’ 
Theorem:
 Pr(H|d) = k Pr(d|H)Pr(H)
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Bayesian Prediction
§ Suppose we want to make a prediction about an unknown quantity X 

(i.e., the flavor of the next candy)

§ Pr(X|d) = Σi Pr(X|d,hi)P(hi|d)
               = Σi Pr(X|hi)P(hi|d) 

§ Predictions are weighted averages of the predictions of the individual 
hypotheses

§ Hypotheses serve as “intermediaries” between raw data and prediction
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Candy Example
§ Assume prior P(H) = <0.1, 0.2, 0.4, 0.2, 0.1>

§ Assume candies are i.i.d. (identically and independently distributed)
§ P(d|h) = Pj P(dj|h)

§ Suppose first 10 candies all taste lime:
§ P(d|h5) = 

§ P(d|h3) = 

§ P(d|h1) = 
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Posterior
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Bayesian Learning
§ Bayesian learning properties:

§ Optimal (i.e., given prior, no other prediction is correct more often than the 
Bayesian one)

§ No overfitting (all hypotheses weighted and considered)

§ There is a price to pay:
§ When hypothesis space is large Bayesian learning may be intractable
§ i.e., sum (or integral) over hypotheses often intractable

§ Solution: approximate Bayesian learning
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Maximum a posteriori (MAP)
§ Idea: make prediction based on most probable hypothesis hMAP

§ hMAP = argmaxhi
 P(hi|d)

§ P(X|d) » P(X|hMAP)

§ In contrast, Bayesian learning makes prediction based on all 
hypotheses weighted by their probability
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Candy Example (MAP)
§ Prediction after 

§ 1 lime: hMAP = h3, Pr(lime|hMAP) = 0.5

§ 2 limes: hMAP = h4, Pr(lime|hMAP) = 0.75
§ 3 limes: hMAP = h5, Pr(lime|hMAP) = 1

§ 4 limes: hMAP = h5, Pr(lime|hMAP) = 1

§ …

§ After only 3 limes, it correctly selects h5
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Candy Example (MAP)
§ But what if correct hypothesis is h4?

§ h4: P(lime) = 0.75 and P(cherry) = 0.25

§ After 3 limes
§ MAP incorrectly predicts h5

§ MAP yields P(lime|hMAP) = 1

§ Bayesian learning yields P(lime|d) = 0.8
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MAP properties
§ MAP prediction less accurate than Bayesian prediction since it relies 

only on one hypothesis hMAP
§ But MAP and Bayesian predictions converge as data increases
§ Controlled overfitting (prior can be used to penalize complex 

hypotheses)

§ Finding hMAP may be intractable:
§ hMAP = argmax P(h|d)
§ Optimization may be difficult
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MAP computation
§ Optimization:

§ hMAP = argmaxh P(h|d)
         = argmaxh P(h) P(d|h)
         = argmaxh P(h) Pi P(di|h)

§ Product induces non-linear optimization

§ Take the log to linearize optimization
§ hMAP = argmaxh log P(h) + Σi log P(di|h)
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Maximum Likelihood (ML)
§ Idea: simplify MAP by assuming uniform prior (i.e., P(hi) = P(hj) "i,j)

§ hMAP = argmaxh P(h) P(d|h)

§ hML = argmaxh P(d|h)

 

§ Make prediction based on hML only:
§ P(X|d) » P(X|hML)
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Candy Example (ML)

§ Prediction after 
§ 1 lime: hML = h5, Pr(lime|hML) = 1

§ 2 limes: hML = h5, Pr(lime|hML) = 1
§ …

§ Frequentist: “objective” prediction since it relies only on the data 
(i.e., no prior)

§ Bayesian: prediction based on data and uniform prior (since no 
prior º uniform prior)  
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ML properties
§ ML prediction less accurate than Bayesian and MAP predictions 

since it ignores prior info and relies only on one hypothesis hML
§ But ML, MAP and Bayesian predictions converge as data increases
§ Subject to overfitting (no prior to penalize complex hypothesis that 

could exploit statistically insignificant data patterns)

§ Finding hML is often easier than hMAP
§ hML = argmaxh Σi log P(di|h)
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Statistical Learning
§ Use Bayesian Learning, MAP or ML

§ Complete data:
§ When data has multiple attributes, all attributes are known
§ Easy

§ Incomplete data:
§ When data has multiple attributes, some attributes are unknown
§ Harder
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Simple ML example
§ Hypothesis hq: 

§ P(cherry)=q & P(lime)=1-q

§ Data d: 
§ c cherries and l limes 

§ ML hypothesis:
§ q is relative frequency of observed data
§ q = c/(c+l)
§ P(cherry) = c/(c+l)  and  P(lime)= l/(c+l)
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ML computation
§ 1) Likelihood expression

§ P(d|hq) = qc (1-q)l

§ 2) log likelihood
§ log P(d|hq) = c log q + l log (1-q)

§ 3) log likelihood derivative
§ d(log P(d|hq))/dq = c/q - l/(1-q)

§ 4) ML hypothesis
§ c/q - l/(1-q) = 0 è q = c/(c+l)
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More complicated ML example
§ Hypothesis: hq,q1,q2

§ Data:
§ c cherries 

§ gc green wrappers
§ rc red wrappers

§ l limes
§ gl green wrappers
§ rl red wrappers
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ML computation
§ 1) Likelihood expression

§ P(d|hq,q1,q2
) = qc(1-q)l q1

rc(1-q1)gc q2
rl(1-q2)gl

§ …

§ 4) ML hypothesis
§ c/q - l/(1-q) = 0 è q = c/(c+l)

§ rc/q1 - gc/(1-q1) = 0 è q1 = rc/(rc+gc)

§ rl/q2 - gl/(1-q2) = 0 è q2 = rl/(rl+gl)
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Laplace Smoothing
§ An important case of overfitting happens when there is no sample for a 

certain outcome
§ E.g., no cherries eaten so far
§ P(cherry) = q = c/(c+l) = 0
§ Zero probabilities are dangerous: they rule out outcomes

§ Solution: Laplace (add-one) smoothing
§ Add 1 to all counts
§ P(cherry) = q = (c+1)/(c+l+2) > 0
§ Much better results in practice
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Naïve Bayes model

C

AnA3A2A1 …

§ Want to predict a 
class C based on 
attributes Ai

§ Parameters: 
§ q = P(C=true)

§ qi1 = P(Ai=true|C=true)

§ qi2 = P(Ai=true|C=false)

§ Assumption: Ai’s are independent given C
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Naïve Bayes model for Restaurant Problem

§ Data:

§ Maximum likelihood:
§ q = relative frequencies of wait and ~wait
§ qi1, qi2 = relative frequencies of each attribute value given wait and ~wait
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Naïve Bayes Model vs Decision Trees

§ Wait prediction for restaurant problem

Why is naïve 
Bayes less 
accurate than 
decision tree?
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Bayesian Network Parameter Learning (Max Likelihood)
§ Parameters qV,pa(V)=v: 

§ CPTs: qV,pa(V)=v = P(V|pa(V)=v)

§ Data d: 
§ d1 : <V1=v1,1, V2=v2,1, …, Vn = vn,1>

§ d2 : <V1=v1,2, V2=v2,2, …, Vn = vn,2>

§ …

§ Maximum likelihood:
§ Set qV,pa(V)=v to the relative frequencies of the values of V given the values v of the parents of V

           qV,pa(V)=v = #(V,pa(V)=v) / #(pa(V)=v)
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