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Outline

= Statistical learning
= Bayesian learning
= Maximum a posteriori

= Maximum likelihood

= Learning from complete Data
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Statistical Learning

= View: we have uncertain knowledge of the world

= Idea: learning simply reduces this uncertainty
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Candy Example

= Favorite candy sold in two flavors:
= Lime (hugh)
= Cherry (yum)

= Same wrapper for both flavors

\ S

= Sold in bags with different ratios:
= 100% cherry

Y

75% cherry + 25% lime

50% cherry + 50% lime

25% cherry + 75% lime
100% lime
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Candy Example

= You bought a bag of candy but don’t know its flavor ratio

= After eating k candies:

= What’s the flavor ratio of the bag?
= What will be the flavor of the next candy?
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Statistical Learning

= Hypothesis H: probabilistic theory of the world
= h,: 100% cherry
= h,: 75% cherry + 25% lime
* h,: 50% cherry + 50% lime
= h,: 25% cherry + 75% lime
* h.: 100% lime
= Data D: evidence about the world
= d,: 18t candy is cherry
= d,: 2" candy is lime
= d,: 3" candy is lime
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Bayesian Learning

= Prior: Pr(H)
= Likelihood: Pr(d|H)
= Evidence: d = <d,,d,,...,d>

= Bayesian Learning amounts to computing the posterior using Bayes’
Theorem:

Pr(H|d) = k Pr(d|H)Pr(H)
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Bayesian Prediction

= Suppose we want to make a prediction about an unknown quantity X
(i.e., the flavor of the next candy)

. Pr(X|d) = Zi PI‘(X|d,hl)P(h1|d)
= %; Pr(X|hy)P(h;|d)

= Predictions are weighted averages of the predictions of the individual
hypotheses

= Hypotheses serve as “intermediaries” between raw data and prediction
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Candy Example

= Assume prior P(H) = <0.1,0.2, 0.4, 0.2, 0.1>

= Assume candies are i.i.d. (identically and independently distributed)
+ P(d|h) =TT, P(d;|h)

= Suppose first 10 candies all taste lime:
cPdh)= ['° = |
«Pdlhy) = ©.5'° == ©,00]

. Pdh)= 69 =0
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Posterior

Posteriors given data generated from h_5
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Prediction

Bayes predictions with data generated from h_5
1 I I I I

Probability that next candy is lime
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Bayesian Learning

= Bayesian learning properties:

= Optimal (i.e., given prior, no other prediction is correct more often than the
Bayesian one)

= No overfitting (all hypotheses weighted and considered)

= There is a price to pay:
= When hypothesis space is large Bayesian learning may be intractable

= i.e., sum (or integral) over hypotheses often intractable

= Solution: approximate Bayesian learning
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Maximum a posteriori (MAP)

= Idea: make prediction based on most probable hypothesis hyap
= hypp = argmaxy, P(h;|d)
» P(X|d) = P(X|hysp)

= In contrast, Bayesian learning makes prediction based on all
hypotheses weighted by their probability

UNIVERSITY OF

CS486/686 Winter 2026 - Lecture 10 - Pascal Poupart PAGE 13 @ WATE RLOO



.
Candy Example (MAP)

» Prediction after
=1 lime: hMAP = h3, Pr(limethAP) = 0.5
= 2 limes: hyjsp = h,, Pr(lime|hy,p) = 0.75

= 3 limes: hyap = h,, Pr(lime|hy;ap) = 1

=4 limeS: hMAP = h5, Pr(lime hMAP) =1

= After only 3 limes, it correctly selects h,
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Candy Example (MAP)

= But what if correct hypothesis is h,?

= h,: P(lime) = 0.75 and P(cherry) = 0.25

= After 3 limes

= MAP incorrectly predicts h,
= MAP yields P(lime|hy,p) =1

= Bayesian learning yields P(lime|d) = 0.8
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MAP properties

» MAP prediction less accurate than Bayesian prediction since it relies
only on one hypothesis hy,p

= But MAP and Bayesian predictions converge as data increases

= Controlled overfitting (prior can be used to penalize complex
hypotheses)

= Finding h,;,p may be intractable:

= hyap = argmax P(h|d)
= Optimization may be difficult
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MAP computation

= Optimization:

= hyap = argmax, P(h|d)
= argmax;, P(h) P(d|h)
= argmax;, P(h) IT; P(d;|h)

= Product induces non-linear optimization

= Take the log to linearize optimization

= hysp = argmaxy, log P(h) + X, log P(d,|h)
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Maximum Likelihood (ML)

= Idea: simplify MAP by assuming uniform prior (i.e., P(h;) = P(h;) vi,j)
= hyp = argmaxy, P(h) P(d|h)
= hy = argmax, P(d|h)

= Make prediction based on hy; only:
» P(X[d) = P(X|hy)
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Candy Example (ML)

= Prediction after
= ] lime: hML = h5, Pr(limethL) =1

= 2 limes: hyy, = h,, Pr(lime|hy;) =1

= Frequentist: “objective” prediction since it relies only on the data
(i.e., no prior)

= Bayesian: prediction based on data and uniform prior (since no
prior = uniform prior)
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ML properties
= ML prediction less accurate than Bayesian and MAP predictions
since it ignores prior info and relies only on one hypothesis hy;

= But ML, MAP and Bayesian predictions converge as data increases

= Subject to overfitting (no prior to penalize complex hypothesis that
could exploit statistically insignificant data patterns)

= Finding h,; is often easier than hyp

= hy; = argmaxy, ; log P(d;|h)
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Statistical Learning
= Use Bayesian Learning, MAP or ML

= Complete data:

= When data has multiple attributes, all attributes are known

= Fasy

= Incomplete data:

= When data has multiple attributes, some attributes are unknown
= Harder
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Simple ML example
= Hypothesis hy:

= P(cherry)=0 & P(lime)=1-0
= Data d:

= ¢ cherries and | limes

= ML hypothesis:

= 0 is relative frequency of observed data
= 0=c/(c+])
= P(cherry) = ¢/(c+l) and P(lime)=1/(c+l)
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ML computation
= 1) Likelihood expression 3

» P(d|hg) = 6¢ (1-0)! Q F J
= 2) log likelihood i’ ( L&)
= log P(d|hy) = clog 6 + 1log (1-0)

= 3) log likelihood derivative

- d(log P(d|hy))/d6 = c/6 - 1/(1-0)
= 4) ML hypothesis
=c/0-1/(1-6) =0 => 0 =c/(c+])
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More complicated ML example

u HypOtheSiS . h9,91’92

P(F=cherry)

S,
= Data:
= ¢ cherries @
F

= g green wrappers PV —red | F)
1 1-. r. red wrappers cherry el
= | 11mes
lime e
= g, green wrappers 2

= 1, red wrappers
Wrapper
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ML computation

= 1) Likelihood expression

« P(d|hgp ) = 05(1-0)" 0,%(1-0,) 0,(1-0,)8
= 4) ML hypothesis

= c/0-1/(1-6) =0 => 0 =c/(c+])

" 1./0,-8./(1-0) =0 > 0, = r./(r.+8.)

* 11/0, - g/(1-6,) =0 > 0, = 1,/(11+g)
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Laplace Smoothing

= An important case of overfitting happens when there is no sample for a
certain outcome

= E.g., no cherries eaten so far
= P(cherry) =0 =c/(c+l) =0

= Zero probabilities are dangerous: they rule out outcomes

= Solution: Laplace (add-one) smoothing
= Add 1 to all counts
= P(cherry) =6 = (c+1)/(c+l+2) > 0

= Much better results in practice
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Naive Bayes model

= Want to predict a
class C based on
attributes A,

= Parameters:

= 0 = P(C=true)
= 0;, = P(A;=true|C=true) @ @ @ @

= 0,, = P(A;=true|C=false)

= Assumption: A;’s are independent given C
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Naive Bayes model for Restaurant Problem

Example Attributes Target
u Data: Alt | Bar | Fri| Hun| Pat | Price| Rain | Res| Type | Est | Wait
X T F F T |[Some| $%% F T [French | 0-10 T
Xy T F|F | T |Ful]| § F | F | Thai |30-60| F
X3 F| T |F | F |Some|[ §$ F | F |Burger|0-10 | T
Xy T|F | T| T |Ful| $ F | F | Thai |10-30] T
X5 T| F | T | F |Full | $$ | F | T [French| >60 F
Xg FI T F T |Some| $$% T T | Italian | 0-10 T
X7 F| T |F F |None| $ T F | Burger| 0-10 F
Xs F| F | F | T |Some| $$ T | T | Thai|0-10| T
Xy F| T | T F | Full $ T F | Burger| >60 F
X | T| T | T | T |Full|$$ | F | T [ltalian|10-30| F
X1 F F F F |None| $ F F | Thai | 0-10 F
Xp [T| T[T | T |Ful] $ F | F |Burger|30-60| T

= Maximum likelihood:

= 0 = relative frequencies of wait and ~wait
= 0, 0;, = relative frequencies of each attribute value given wait and ~wait
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Naive Bayes Model vs Decision Trees

= Wait prediction for restaurant problem
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Bayesian Network Parameter Learning (Max Likelihood)

= Parameters Oy ,,v)-v:
= CPTs: Oy puv)v = P(V[pa(V)=v)
= Data d:
o d, 1 <Vi=v, Vo=vo o, V= v >
w d, <V, =V, Vo=V, oy V= v 0>
= Maximum likelihood:

= Set Oy ,a(v)-v to the relative frequencies of the values of V given the values v of the parents of V

6V,pa(V)=v = #(V>P3(V)=V) / #(Pa(V) =V)
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