Project Ideas

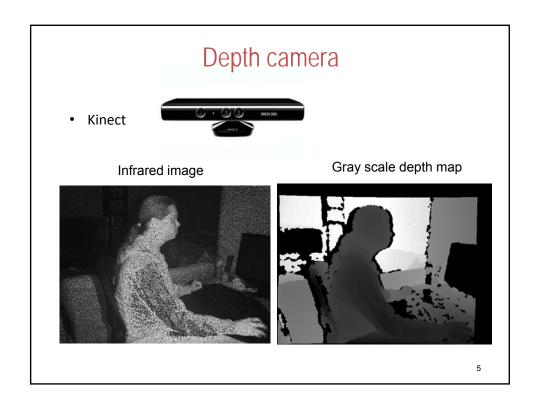
CS486/686

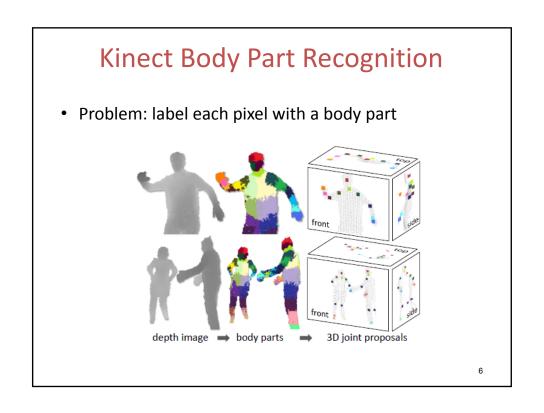
1

Four Types of Projects

- Literature survey
- Implementation
- Algorithm Design
- Theoretical Analysis
- All of the above are fine as long as they are related to Artificial Intelligence

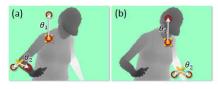
Literature Survey Examples

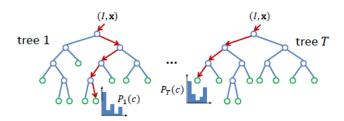

- How is motion tracking and action recognition done with a depth camera such as the Kinect (Xbox 360)? (computer vision, machine learning)
- What is the state of the art for computer go (search techniques), computer poker (game theory, machine learning), etc.?
- 3. How can we detect emotions in speech? (speech recognition, machine learning)
- 4. How can we automatically classify product reviews/blogs as positive or negative? (natural language processing, machine learning)
- 5. How are ads selected for advertisement by search engines and other websites (computational advertisement, game theory, machine learning)


3

Xbox 360 Kinect

- Microsoft Cambridge
- · Body part recognition: supervised learning





Kinect Body Part Recognition

• Features: depth differences between pairs of pixels

• Classification: forest of decision trees

7

Smart Walkers

Instrumented Walker

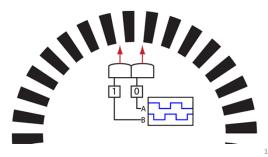
Forward View

Backward View

Smart Walker Sensors

Current:

- 4 Load Sensors
- 2 Wheel Encoders
- 3-Axis Accelerometer
- GPS


Next:

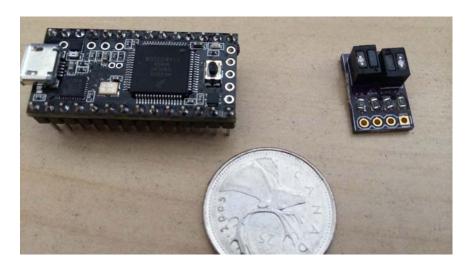
- +2 Wheel Encoders
- +3-Axis Gyroscope and Compass

9

Wheel Encoders

- Measure wheel movement
 - Sensor generates low/high signals
 - No Directionality
- With two we can infer direction
 - Offset ½ wave
 - "Quadrature"

Walker Quadrature Assemblies


- 1st Walker uses wheel embedded magnets
 - Costly and time consuming to install
- New Walkers will use optical encoders
 - Sticker on wheel alternating light/dark
 - Simple sensor
 - Results not as uniform (dust, washout, fading)
- We need to compensate for this!

11

Adaptive Signal Interpretation

- With very limited space/processing:
 - Detect changes in min/max values per channel
 - Adapt thresholds for signal being 1/0
 - Warn if signal amplitude wanes too much
- Teensy 3
 - Arduino compatible* microcontroller
 - 32bit arm processor

Teensy and Quadrature

13

Another Challenge - Hibernate

- Eventual goal is long term Walker deployment
 - Battery life should be in weeks
- Can we detect periods of low interest
 - Walker not in use
 - Walker used as seat
- Disable high draw devices and polling of them
- Detect when to enable all sensors again
 - Vibration sensor?

Smart Phones – Algorithm Design

- Battery Life is a major issue for mobile devices such as smart phones
- Battery depletion rate depends on the services in use (i.e., CPU, WIFI, 3G/4G, Bluetooth, GPS, etc.)
- Two projects:
 - Using Machine Learning techniques, learn a predictive model regarding the usage patterns of services and their impact on battery depletion rate
 - Using decision theoretic methods (Markov Decision Processes and Reinforcement Learning), design a tool to manage services in a way that minimizes energy consumption

15

Sum Product Networks (SPNs)

- · New type of probabilistic graphical model
 - Alternative to Bayesian networks
 - Promising approach for Deep Learning
 - Guarantee: exact inference in linear time
- Several projects that could lead to research papers

SPNs – Empirical Evaluation

- Evaluate and compare existing learning algorithms described in the following papers
 - Sum-Product Networks: A New Deep Architecture homes.cs.washington.edu/~pedrod/papers/uai11a.pdf
 - Discriminative Learning of Sum-Product Networks books.nips.cc/papers/files/nips25/NIPS2012 1484.pdf
 - Greedy Part-Wise Learning of Sum-Product Networks ecmlpkdd2013.org/wp-content/uploads/2013/07/498.pdf
 - Learning the Architecture of Sum-Product Networks Using Clustering on Variables books.nips.cc/papers/files/nips25/NIPS2012 1012.pdf

17

SPNs - Algorithm Design

- Design new machine learning technique with better performance guarantees than existing ones
- It may be possible to design algorithms that scale better while avoiding local optima based on
 - Spectral learning or
 - Moment matching
- Talk to Pascal for more details

SPNs – Theoretical Analysis

- The relationship between sum product networks (SPNs) and Bayesian networks (BNs) is not well understood
 - All SPNs can be converted into BNs in polynomial time
 - Some BNs can be converted into SPNs in polynomial time
- Project: characterize the class of BNs that can be converted to SPNs in polynomial time

19

Moment Matching (MM)

- Moment matching refers to a general machine learning approach where the parameters of a model are set by matching the moments of the model to empirical moments of the data
 - Promising approach to circumvent local optima
- Several projects that could lead to research papers

MM – Algorithm Design

- Design a new moment matching technique for an existing model
- Some models that could benefit from MM include
 - Bayesian networks
 - Sum product networks
 - Mixtures of Gaussians (clustering technique)
- · Talk to Pascal for mode details

21

MM – Theoretical Analysis

- · Some properties of MM are not well understood
- For instance, suppose that an infinite amount of data is generated from a Naïve Bayes model. Under what circumstances is MM guaranteed to recover the correct parameters of the Naïve Bayes model?