Informed Search [RN2] Sec. 4.1, 4.2 [RN3] Sec. 3.5, 3.6

CS 486/686 University of Waterloo Lecture 3: January 14, 2014

CS486/686 Lecture Slides 2014 (c) P. Poupart

1

Outline

- · Using knowledge
 - Heuristics
- · Best-first search
 - Greedy best-first search
 - A* search
 - Other variations of A*
- · Back to heuristics

2

Recall from last lecture

- Uninformed search methods expand nodes based on "distance" from start node
 - Never look ahead to the goal
 - E.g. in uniform cost search expand the cheapest path. We never consider the cost of getting to the goal
 - Advantage is that we have this information
- But, we often have some additional knowledge about the problem
 - E.g. in traveling around Romania we know the distances between cities so we can measure the overhead of going in the wrong direction

CS486/686 Lecture Slides 2014 (c) P. Poupart

3

Informed Search

- · Our knowledge is often on the merit of nodes
 - Value of being at a node
- · Different notions of merit
 - If we are concerned about the cost of the solution, we might want a notion of how expensive it is to get from a state to a goal
 - If we are concerned with minimizing computation, we might want a notion of how easy it is to get from a state to a goal
 - We will focus on cost of solution

4

Informed search

- We need to develop a domain specific heuristic function, h(n)
- h(n) guesses the cost of reaching the goal from node n
 - The heuristic function must be domain specific
 - We often have some information about the problem that can be used in forming a heuristic function (i.e. heuristics are domain specific)

CS486/686 Lecture Slides 2014 (c) P. Poupart

5

Informed search

- If $h(n_1) < h(n_2)$ then we guess that it is cheaper to reach the goal from n_1 than it is from n_2
- We require

h(n) = 0 when n is a goal node

 $h(n) \ge 0$ for all other nodes

6

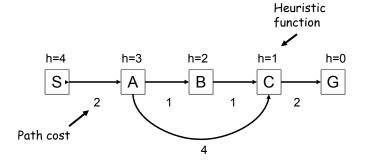
Greedy best-first search

- Use the heuristic function, h(n), to rank the nodes in the fringe
- Search strategy
 - Expand node with lowest h-value
- Greedily trying to find the least-cost solution

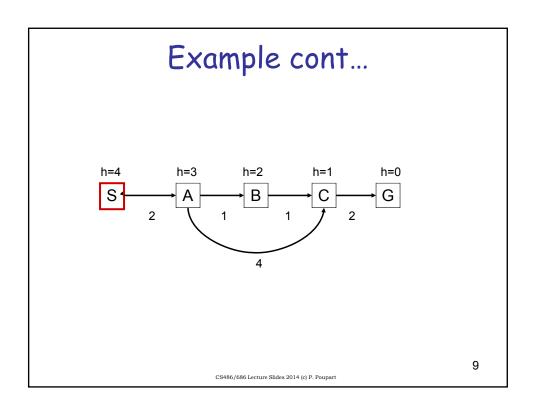
CS486/686 Lecture Slides 2014 (c) P. Poupart

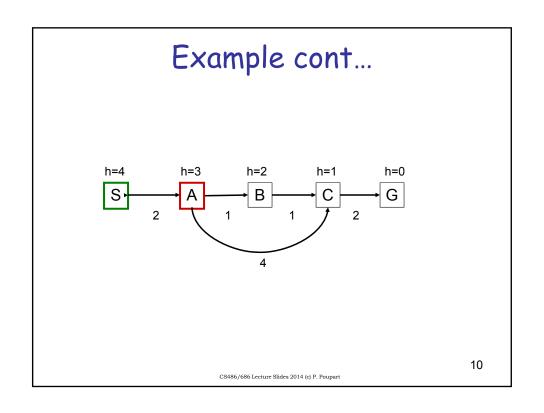
7

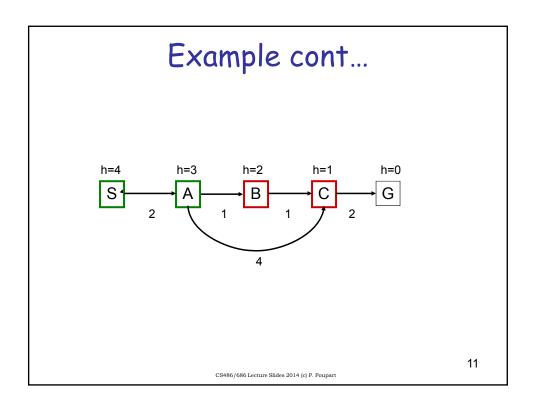
Greedy best-first search: Example

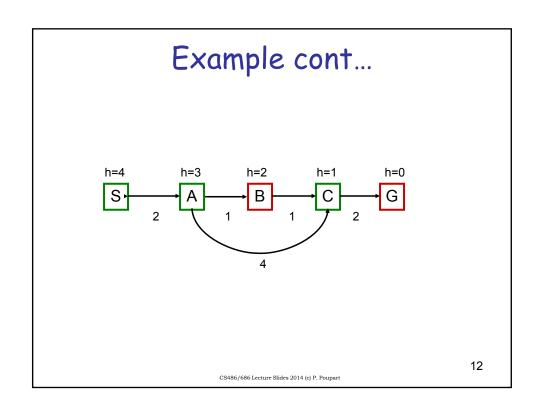


8

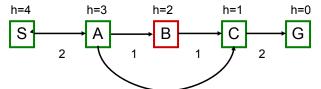








Example cont...



Found the goal

Path is S, A, C, G

Cost of the path is 2+4+2=8

But cheaper path is S, A, B, C, G

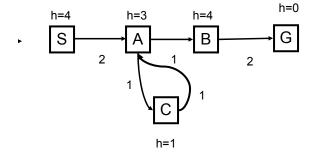
With cost 2+1+1+2=6

Greedy best-first is not optimal

CS486/686 Lecture Slides 2014 (c) P. Poupart

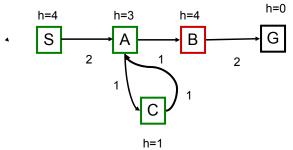
13

Another Example



14

Another Example



Greedy best-first can get stuck in loops

Not complete

CS486/686 Lecture Slides 2014 (c) P. Poupart

15

Properties of greedy search

- · Not optimal!
- · Not complete!
 - If we check for repeated states then we are ok
- Exponential space in worst case since need to keep all nodes in memory
- Exponential worst case time $\mathcal{O}(b^m)$ where m is the maximum depth of the tree
 - If we choose a good heuristic then we can do much better

16

A* Search

- · Greedy best-first search is too greedy
 - It does not take into account the cost of the path so far!
- · Define

f(n) = g(n) + h(n)

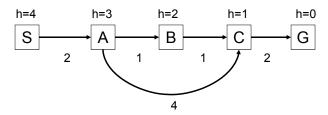
g(n) is the cost of the path to node n h(n) is the heuristic estimate of the cost of reaching the goal from node n

- · A* search
 - Expand node in fringe (queue) with lowest f value

17

CS486/686 Lecture Slides 2014 (c) P. Poupart

A* Example

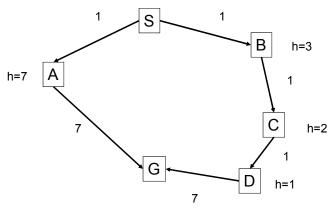


- 1. Expand S
- 2. Expand A
- 3. Choose between B (f(B)=3+2=5) and C (f(C)=6+1=7)) expand B
- 4. Expand C
- 5. Expand G recognize it is the goal

18

When should A* terminate?

· As soon as we find a goal state?

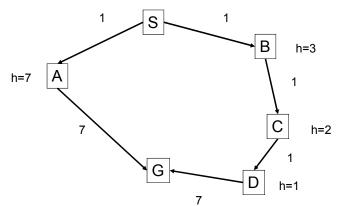


CS486/686 Lecture Slides 2014 (c) P. Poupart

19

When should A* terminate?

· As soon as we find a goal state?

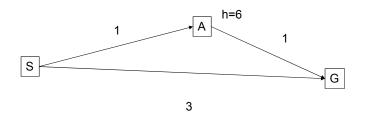


 $\ensuremath{A^{\star}}$ Terminates only when goal state is popped from the queue

CS486/686 Lecture Slides 2014 (c) P. Poupart

20

Is A* Optimal?



No. This example shows why not.

CS486/686 Lecture Slides 2014 (c) P. Poupart

21

Admissible heuristics

- Let $h^*(n)$ denote the true minimal cost to the goal from node n
- A heuristic, h, is admissible if $h(n) \le h^*(n)$ for all n
- Admissible heuristics never overestimate the cost to the goal
 - Optimistic

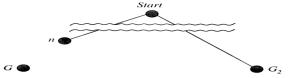
22

Optimality of A*

If the heuristic is admissible then A^* with treesearch is optimal

Let G be an optimal goal state, and $f(G) = f^* = g(G)$. Let G_2 be a suboptimal goal state, i.e. $f(G_2) = g(G_2) > f^*$. Assume for contradiction that A^* has selected G_2 from the queue. (This would terminate A^* with a suboptimal solution)

Let n be a node that is currently a leaf node on an optimal path to G.

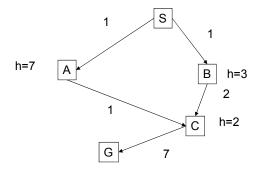


Because h is admissible, $f^* \ge f(n)$. If n is not chosen for expansion over G_2 , we must have $f(n) \ge f(G_2)$ So $f^* \ge f(G_2)$. Because $h(G_2) = 0$, we have $f^* \ge g(G_2)$, contradiction.

CS486/686 Lecture Slides 2014 (c) P. Poupart

A* and revisiting states

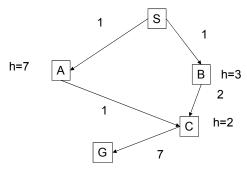
What if we revisit a state that was already expanded?



24

A* and revisiting states

What if we revisit a state that was already expanded?



If we allow states to be expanded again, we might get a better solution!

CS486/686 Lecture Slides 2014 (c) P. Poupart

25

Optimality of A*

- For searching graphs we require something stronger than admissibility
 - Consistency (monotonicity): $h(n) \le cost(n, n') + h(n') \ \forall n, n'$
 - Almost any admissible heuristic function will also be consistent
- A* graph-search with a consistent heuristic is optimal

26

Properties of A*

- Complete if the heuristic is consistent
 - Along any path, f always increases (if a solution exists somewhere, the f value will eventually get to its cost)
- Exponential time complexity in worst case
 - A good heuristic will help a lot here
 - O(bm) if the heuristic is perfect
- · Exponential space complexity

27

CS486/686 Lecture Slides 2014 (c) P. Poupar

Memory-bounded heuristic search

- · A* keeps most generated nodes in memory
 - On many problems A* will run out of memory
- Iterative deepening A* (IDA*)
 - Like IDS but change f-cost rather than depth at each iteration
- SMA* (Simplified Memory-Bounded A*)
 - Uses all available memory
 - Proceeds like A^* but when it runs out of memory it drops the worst leaf node (one with highest f-value)
 - If all leaf nodes have the same f-value then it drops oldest and expands the newest
 - Optimal and complete if depth of shallowest goal node is less than memory size

28

Heuristic Functions

- A good heuristic function can make all the difference!
- How do we get heuristics?
 - One approach is to think of an easier problem and let h(n) be the cost of reaching the goal in the easier problem

CS486/686 Lecture Slides 2014 (c) P. Poupart

29

8-puzzle

Start State

Relax the game

- Can move tile from position A to position B if A is next to B (ignore whether or not position is blank)
- 2. Can move tile from position A to position B if B is blank (ignore adjacency)
- 3. Can move tile from position A to position B

30

8-puzzle cont...

- 3) leads to misplaced tile heuristic
 - To solve this problem need to move each tile into its final position
 - Number of moves = number of misplaced tiles
 - Admissible
- 1) leads to manhattan distance heuristic
 - To solve the puzzle need to slide each tile into its final position
 - Admissible

31

CS486/686 Lecture Slides 2014 (c) P. Poupart

8-puzzle cont...

- $h_3 = misplaced tiles$
- $h_1 = manhattan distance$
- Note h_1 dominates h_3 $h_3(n) \le h_1(n)$ for all nWhich heuristic is best?

32

Designing heuristics

- Relaxing the problem (as just illustrated)
- Precomputing solution costs of subproblems and storing them in a pattern database
- Learning from experience with the problem class

33

CS486/686 Lecture Slides 2014 (c) P. Poupart

Conclusion

- · What you should now know
 - Thoroughly understand A* and IDA*
 - Be able to trace simple examples of A* and IDA* execution
 - Understand admissibility and consistency of heuristics
 - Proof of completeness, optimality
 - Criticize greedy best-first search

34