Bandits

CS 486 / 686

University of Waterloo

Lecture 22: March 27, 2014

Exploration/Exploitation Tradeoff

 Fundamental problem of RL due to the active nature of the learning process

 Consider one-state RL problems known as bandits

Stochastic Bandits

- Formal definition:
 - Single state: S = {s}
 - A: set of actions (also known as arms)
 - Space of rewards (typically assumed to be [0,1])
- No transition function to be learned since there is a single state
- We simply need to learn the stochastic reward function

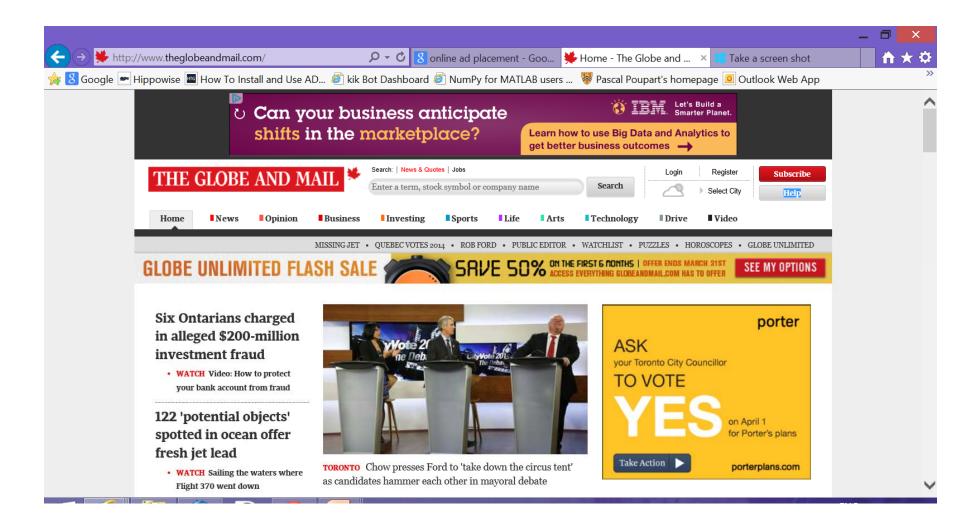
Origin

- The term bandit comes from gambling where slot machines can be thought as one-armed bandits.
- Problem: which slot machine should we play at each turn when their payoffs are not necessarily the same and initially unknown?

Examples

- Design of experiments (Clinical Trials)
- Online ad selection
- Games
- Networks (packet routing)

Online Ad Optimization



Online Ad Optimization

- Problem: which ad should be presented?
- Answer: present ad with highest payoff

```
payoff = clickThroughRate \times payment
```

- Click through rate: probability that user clicks on ad
- Payment: \$\$ paid by advertiser
 - Amount determined by an auction

Simplified Problem

- Assume payment is 1 unit for all ads
- Need to estimate click through rate
- Formulate as a bandit problem:
 - Arms: the set of possible ads
 - Rewards: 0 (no click) or 1 (click)
- In what order should ads be presented to maximize revenue?
 - How should we balance exploitation and exploration?

Simple yet difficult problem

- Simple: description of the problem is short
- Difficult: no known tractable optimal solution

Simple heuristics

- Greedy strategy: select the arm with the highest average so far
 - May get stuck due to lack of exploration
- ε-greedy: select an arm at random with probability ε and otherwise do a greedy selection
 - Convergence rate depends on choice of ϵ

Regret

- Let R(a) be the unknown average reward of a
- Let $r^* = \max_a R(a)$ and $a^* = argmax_a R(a)$
- Denote by loss(a) the expected regret of a $loss(a) = r^* - R(a)$
- Denote by $Loss_n$ the expected cumulative regret for n time steps

$$Loss_n = \sum_{t=1}^n loss(a_t)$$

Theoretical Guarantees

- When ϵ is constant, then
 - For large enough t: $Pr(a_t \neq a^*) \approx \epsilon$
 - Expected cumulative regret: $Loss_n = O(n)$
 - Linear regret
- When $\epsilon_{\rm t} \propto 1/t$
 - For large enough t: $\Pr(a_t \neq a^*) \approx \epsilon_t = O\left(\frac{1}{t}\right)$
 - Expected cumulative regret: $Loss_n = O(\log n)$
 - Logarithmic regret

Empirical mean

- Problem: how far is the empirical mean $\tilde{R}(a)$ from the true mean R(a)?
- If we knew that $|R(a) \tilde{R}(a)| \leq bound$
 - Then we would know that $R(a) < \tilde{R}(a) + bound$
 - And we could select the arm with best $\tilde{R}(a) + bound$
- Overtime, additional data will allow us to refine $\tilde{R}(a)$ and compute a tighter bound.

Positivism in the Face of Uncertainty

- Suppose that we have an oracle that returns an upper bound $UB_n(a)$ on R(a) for each arm based on n trials of arm a.
- Suppose the upper bound returned by this oracle converges to R(a) in the limit:
 - i.e. $\lim_{n\to\infty} UB_n(a) = R(a)$
- Optimistic algorithm
 - At each step, select $argmax_a$ $UB_n(a)$

Convergence

- Theorem: An optimistic strategy that always selects $argmax_aUB_n(a)$ will converge to a^*
- Proof by contradiction:
 - Suppose that we converge to suboptimal arm a after infinitely many trials.
 - Then $R(a) = UB_{\infty}(a) \ge UB_{\infty}(a') = R(a') \forall a'$
 - But $R(a) \ge R(a') \ \forall a'$ contradicts our assumption that a is suboptimal.

Probabilistic Upper Bound

- Problem: We can't compute an upper bound with certainty since we are sampling
- However we can obtain measures f that are upper bounds most of the time

$$- i.e., Pr(R(a) \le f(a)) \ge 1 - \delta$$

Example: Hoeffding's inequality

$$\Pr\left(R(a) \le \tilde{R}(a) + \sqrt{\frac{\log(\frac{1}{\delta})}{2n_a}}\right) \ge 1 - \delta$$

where n_a is the number of trials for arm a

Upper Confidence Bound (UCB)

- Set $\delta_n = 1/n^4$ in Hoeffding's bound
- Choose a with highest Hoeffding bound

```
V \leftarrow 0, \ n \leftarrow 0, \ n_a \leftarrow 0 \ \forall a
Repeat until n = h
           Execute \underset{a}{\operatorname{argmax}} \tilde{R}(a) + \sqrt{\frac{2 \log n}{n_a}}
           Receive r
         \tilde{R}(a) \leftarrow \frac{n_a \tilde{R}(a) + r}{n_a + 1}
           n \leftarrow n + 1, n_a \leftarrow n_a + 1
Return V
```

UCB Convergence

- Theorem: Although Hoeffding's bound is probabilistic, UCB converges
- Proof: As n increases, the term $\sqrt{\frac{2\log n}{n_a}}$ increases, ensuring that all arms are tried infinitely often
- Expected cumulative regret: $Loss_n = O(\log n)$
 - Logarithmic regret

Summary

- Stochastic bandits
 - Exploration/exploitation tradeoff
- *ϵ*-greedy and UCB
 - Theory: logarithmic expected cumulative regret
- In practice:
 - UCB often performs better than ϵ -greedy
 - Many variants of UCB improve performance