Markov Decision Processes [RN2] Sec 17.1, 17.2, 17.4, 17.5 [RN3] Sec 17.1, 17.2, 17.4

CS 486/686
University of Waterloo

Lecture 20: March 20, 2014

Outline

- Markov Decision Processes
- · Dynamic Decision Networks

Sequential Decision Making

Static Inference

Bayesian Networks

Static Decision Making

Decision Networks

Sequential Inference

Hidden Markov Models Dynamic Bayesian Networks

Sequential Decision Making

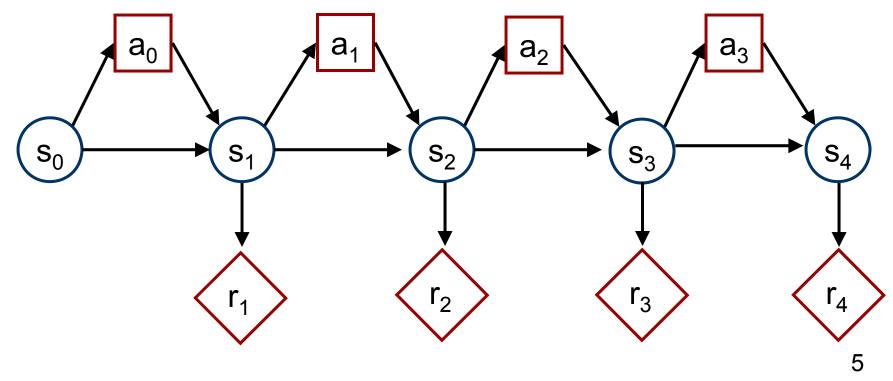
Markov Decision Processes Dynamic Decision Networks

Sequential Decision Making

- · Wide range of applications
 - Robotics (e.g., control)
 - Investments (e.g., portfolio management)
 - Computational linguistics (e.g., dialogue management)
 - Operations research (e.g., inventory management, resource allocation, call admission control)
 - Assistive technologies (e.g., patient monitoring and support)

Markov Decision Process

- · Intuition: Markov Process with...
 - Decision nodes
 - Utility nodes



Stationary Preferences

· Hum... but why many utility nodes?

- $U(s_0, s_1, s_2, ...)$
 - Infinite process → infinite utility function
- Solution:
 - Assume stationary and additive preferences
 - $U(s_0, s_1, s_2, ...) = \Sigma_t R(s_t)$

Discounted/Average Rewards

- If process infinite, isn't $\Sigma_t R(s_t)$ infinite?
- Solution 1: discounted rewards
 - Discount factor: $0 \le \gamma \le 1$
 - Finite utility: $\Sigma_t \gamma^t R(s_t)$ is a geometric sum
 - γ is like an inflation rate of $1/\gamma$ 1
 - Intuition: prefer utility sooner than later
- Solution 2: average rewards
 - More complicated computationally
 - Beyond the scope of this course

Markov Decision Process

- · Definition
 - Set of states: 5
 - Set of actions (i.e., decisions): A
 - Transition model: $Pr(s_{t}|a_{t-1},s_{t-1})$
 - Reward model (i.e., utility): $R(s_t)$
 - Discount factor: $0 \le \gamma \le 1$
 - Horizon (i.e., # of time steps): h
- Goal: find optimal policy

Inventory Management

- Markov Decision Process
 - States: inventory levels
 - Actions: {doNothing, orderWidgets}
 - Transition model: stochastic demand
 - Reward model: Sales Costs Storage
 - Discount factor: 0.999
 - Horizon: ∞
- Tradeoff: increasing supplies decreases odds of missed sales but increases storage costs

Policy

· Choice of action at each time step

- Formally:
 - Mapping from states to actions
 - i.e., $\delta(s_t) = a_t$
 - Assumption: fully observable states
 - Allows a_t to be chosen only based on current state s_t . Why?

Policy Optimization

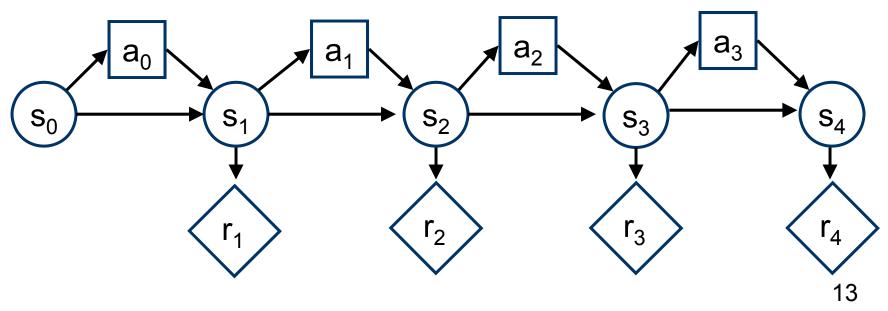
- Policy evaluation:
 - Compute expected utility
 - EU(δ) = $\Sigma_{t=0}^{h} \gamma^{t} \Pr(s_{t}|\delta) R(s_{t})$
- Optimal policy:
 - Policy with highest expected utility
 - EU(δ) ≤ EU(δ *) for all δ

Policy Optimization

- · Three algorithms to optimize policy:
 - Value iteration
 - Policy iteration
 - Linear Programming
- Value iteration:
 - Equivalent to variable elimination

Value Iteration

- Nothing more than variable elimination
- · Performs dynamic programming
- · Optimize decisions in reverse order



Value Iteration

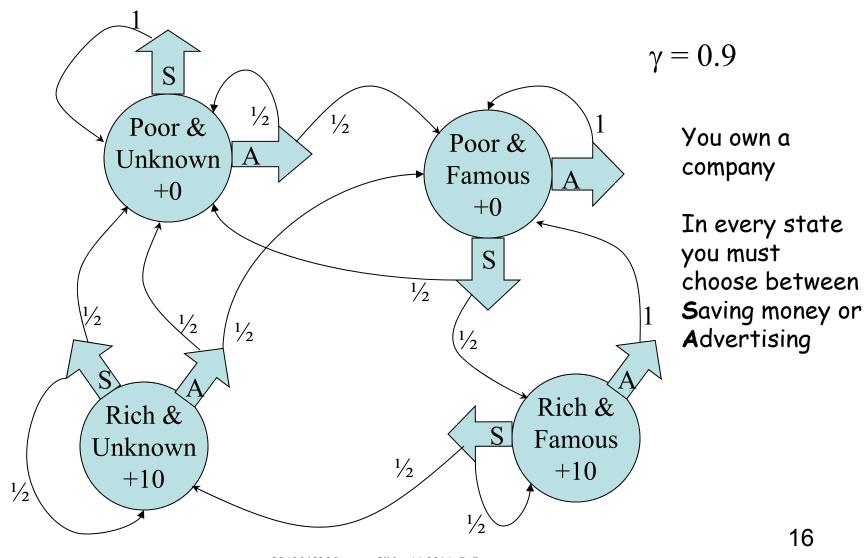
- At each t, starting from t=h down to 0:
 - Optimize a_t : EU($a_t|s_t$)?
 - Factors: $Pr(s_{i+1}|a_i,s_i)$, $R(s_i)$, for $0 \le i \le h$
 - Restrict st

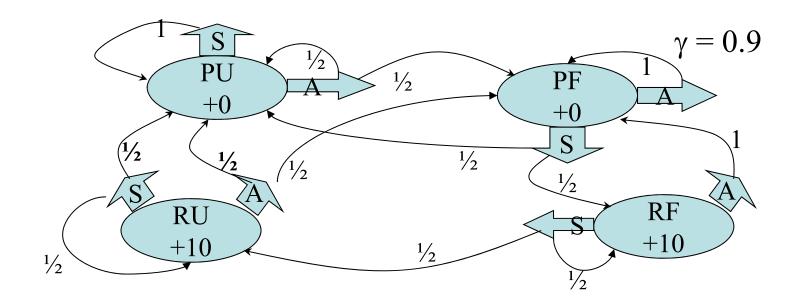
- Eliminate $s_{t+1},...,s_h,a_{t+1},...,a_h$ s_0 s_1 s_2 r_1 r_2 r_3 r_4

Value Iteration

- · Value when no time left:
 - $V(s_h) = R(s_h)$
- Value with one time step left:
 - $V(s_{h-1}) = max_{a_{h-1}} R(s_{h-1}) + \gamma \sum_{s_h} Pr(s_h | s_{h-1}, a_{h-1}) V(s_h)$
- Value with two time steps left:
 - $V(s_{h-2}) = \max_{a_{h-2}} R(s_{h-2}) + \gamma \sum_{s_{h-1}} Pr(s_{h-1}|s_{h-2},a_{h-2}) V(s_{h-1})$
- •
- · Bellman's equation:
 - $V(s_t) = \max_{a_t} R(s_t) + \gamma \sum_{s_{t+1}} Pr(s_{t+1}|s_t,a_t) V(s_{t+1})$
 - a_{t}^{*} = $argmax_{a_{t}} R(s_{t}) + \gamma \sum_{s_{t+1}} Pr(s_{t+1}|s_{t},a_{t}) V(s_{t+1})$

A Markov Decision Process





†	V(PU)	V(PF)	V(RU)	V(RF)
h	0	0	10	10
h-1	0	4.5	14.5	19
h-2	2.03	8.55	16.53	25.08
h-3	4.76	12.20	18.35	28.72
h-4	7.63	15.07	20.40	31.18
h-5	10.21	17.46	22.61	33.21

Finite Horizon

- · When h is finite,
- Non-stationary optimal policy
- Best action different at each time step
- Intuition: best action varies with the amount of time left

Infinite Horizon

- · When h is infinite,
- Stationary optimal policy
- Same best action at each time step
- Intuition: same (infinite) amount of time left at each time step, hence same best action
- Problem: value iteration does an infinite number of iterations...

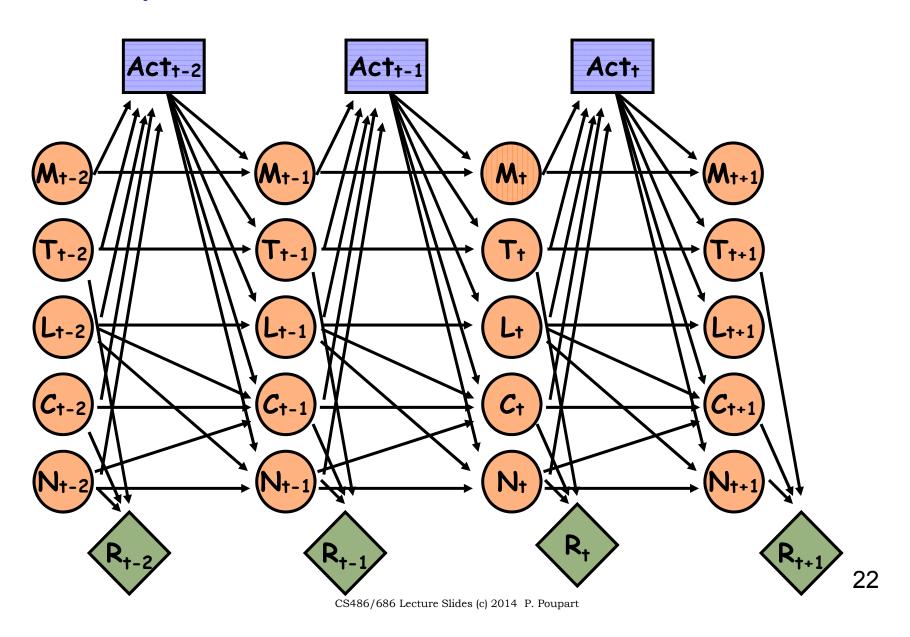
Infinite Horizon

- Assuming a discount factor γ , after k time steps, rewards are scaled down by γ^k
- For large enough k, rewards become insignificant since $\gamma^k \rightarrow 0$
- Solution:
 - pick large enough k
 - run value iteration for k steps
 - Execute policy found at the kth iteration

Computational Complexity

- Space and time: $O(k|A||S|^2)$ \odot
 - Here k is the number of iterations
- But what if |A| and |S| are defined by several random variables and consequently exponential?
- Solution: exploit conditional independence
 - Dynamic decision network

Dynamic Decision Network

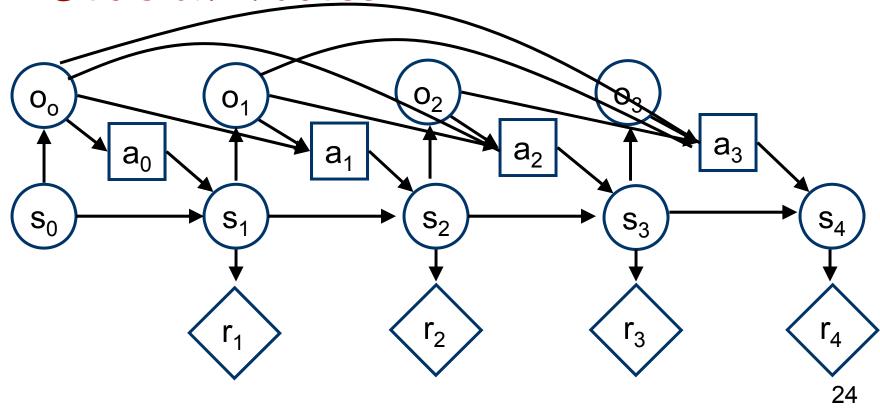


Dynamic Decision Network

- · Similarly to dynamic Bayes nets:
 - Compact representation ©
 - Exponential time for decision making 🕾

Partial Observability

- · What if states are not fully observable?
- Solution: Partially Observable Markov Decision Process



Partially Observable Markov Decision Process (POMDP)

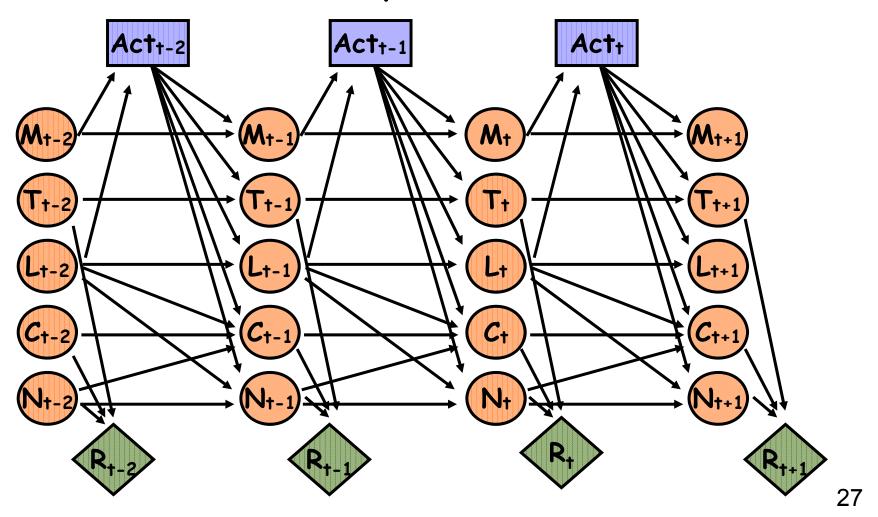
- · Definition
 - Set of states: 5
 - Set of actions (i.e., decisions): A
 - Set of observations: O
 - Transition model: $Pr(s_t|a_{t-1},s_{t-1})$
 - Observation model: $Pr(o_t|s_t)$
 - Reward model (i.e., utility): $R(s_t)$
 - Discount factor: $0 \le \gamma \le 1$
 - Horizon (i.e., # of time steps): h
- · Policy: mapping from past obs. to actions

POMDP

- Problem: action choice generally depends on all previous observations...
- Two solutions:
 - Consider only policies that depend on a finite history of observations
 - Find stationary sufficient statistics encoding relevant past observations

Partially Observable DDN

Actions do not depend on all state variables



Policy Optimization

- Policy optimization:
 - Value iteration (variable elimination)
 - Policy iteration
- POMDP and PODDN complexity:
 - Exponential in |O| and k when action choice depends on all previous observations \odot
 - In practice, good policies based on subset of past observations can still be found

COACH project

- Automated prompting system to help elderly persons wash their hands
- IATSL: Alex Mihailidis, Pascal Poupart, Jennifer Boger, Jesse Hoey, Geoff Fernie and Craig Boutilier

Aging Population

Dementia

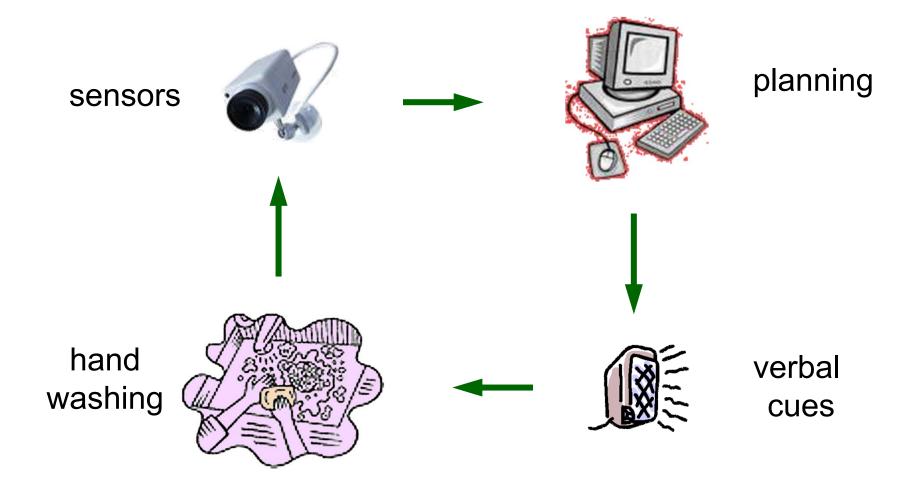
- Deterioration of intellectual faculties
- Confusion
- Memory losses (e.g., Alzheimer's disease)

- Loss of autonomy
- Continual and expensive care required

Intelligent Assistive Technology

- Let's facilitate aging in place
- Intelligent assistive technology
 - Non-obtrusive, yet pervasive
 - Adaptable
- Benefits:
 - Greater autonomy
 - Feeling of independence

System Overview



Prompting Strategy

- Sequential decision problem
 - Sequence of prompts
- Noisy sensors & imprecise actuators
 - Noisy image processing, uncertain prompt effects
- Partially unknown environment
 - Unknown user habits, preferences and abilities
- Tradeoff between complex concurrent goals
 - Rapid task completion vs greater autonomy
- Approach: Partially Observable Markov Decision Processes (POMDPs)

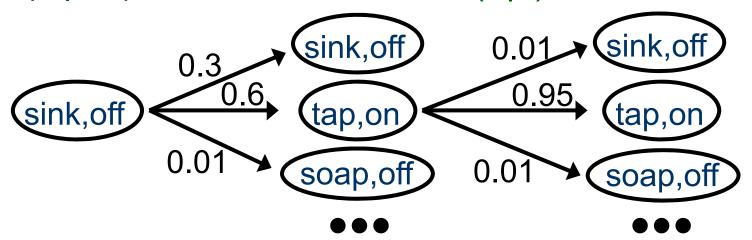
POMDP components

- State set S = dom(HL) x dom(WF) x dom(D) x ...
 - Hand Location ∈ {tap,water,soap,towel,sink,away,...}
 - Water Flow ∈ {on, off},
 - Dementia ∈ {high, low}, etc.
- Observation set O = dom(C) x dom(FS)
 - Camera ∈ {handsAtTap, handsAtTowel, ...}
 - Faucet sensor ∈ {waterOn, waterOff}
- Action set A
 - DoNothing, CallCaregiver, Prompt ∈ {turnOnWater, rinseHands, useSoap, ...}

POMDP components

 Transition function Pr(s'|s,a)

Observation function Pr(o|s)



- Reward function R(s,a)
 - Task completed → +100
 - Call caregiver → -30
 - Each prompt \rightarrow -1, -2 or -3