Reasoning Over Time
[RN2] Sec 15.1-15.3, 15.5
[RN3] Sec 15.1-15.3, 15.5
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Sampling Techniques

Direct sampling
Rejection sampling
Likelihood weighting
Importance sampling

Particle Filtering (a.k.a. sequential Monte Carlo
sampling)
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Approximate Inference by Sampling

* Expectation: Ep[f(x)] = [ P(x)f (x)dx
— Approximate integral by sampling:
Eplf ()] ~ =TIy f (x;) where x;~P(x)

* Inference query: Pr(X|e) = Y.y Pr(X,Y|e)
— Approximate exponentially large sum by sampling:

Pr(X|e) = %Z?ﬂ Pr(X|y;, e) where y,~P(Y|e)
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Direct Sampling (a.k.a. forward sampling)

* Unconditional inference queries (i.e., Pr(V = t))

* Bayesian networks

— Idea: sample each variable given the values of its parents
according to the topological order of the graph.
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Direct Sampling Algorithm

Sort the variables by topological order
Fori = 1 to n do (sample n particles)
For each variable V; do

Sample vj(i) ~Pr(V|pay)

* Approximation: Pr(V, =t) z% i=16(v1£i) =1t)
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Analysis

* Complexity: O(n|V|) where |V| = #variables

* Accuracy
— Absolute error €: P(|[P(V) — P(V)| > €) < § = 2¢2n¢

zen >0
* Samplesizen = —3~
2e

; p _nPWe?
— Relative errore: P (% €[l—¢1+ e]) <§d=2e 3

s1n(2)

2P(V)e?

* Sample sizen >
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Rejection Sampling
* Conditional inference queries (i.e., Pr(V = t|e))

* Bayesian networks

— Idea: sample each variable given the values of its parents
according to the topological order of the graph, however
reject samples that do not agree with evidence
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Rejection Sampling Algorithm

Sort the variables by topological order
Fori = 1 to n do (sample n particles)
For each variable V; do
Sample vj(i) ~Pr(V|pay)
Reject v® if @ js inconsistent with e (i.e., vg) * e)
S, 8(v=t Avf=e)

Approximation: Pr(V, =t|e) = T (=)
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Analysis

* Complexity: O(n|V|) where |V| = #variables

* Expected # samples that are accepted: O(n Pr(e))

— Since Pr(e) often decreases exponentially with the
number of evidence variables, the number of samples also
decreases exponentially.

— For good accuracy: exponential # of samples often needed
in practice.
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Likelihood Weighting
* Conditional inference queries (i.e., Pr(V = t|e))

* Bayesian networks

— ldea: sample each non-evidence variable given the values
of its parents in topological order. Assign weights to
samples based on the probability of the evidence.

CS486 Lecture Slides (c) P. Poupart 2014 12

2014-02-27



Likelihood Weighting Algorithm

Sort the variables by topological order
Fori = 1 to n do (sample n particles)

w; <1

For each variable V] do
If V;is notan evidence variable do

Sample vj(i) ~Pr(V;|pay)

else

w; < w; * Pr (vj|pavj)

* Approximation:

pi wié(v,(ci)=t)

2?:1 wi

Pr(Vk = tle) =
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Example
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Analysis

* Complexity: O(n|V|) where |V| = #variables

* Effective sample size: O(n Pr(e))
— Even though all samples are accepted, their importance is
reweighted to a fraction equal to Pr(e)

— For good accuracy: the # of samples will be the same as for
rejection sampling (hence exponential with the number of
evidence variables).
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Particle Filtering

* Variant of likelihood weighting for sequential
processes such as dynamic Bayesian networks

* # of particles needed grows exponentially with the
number of observations.
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Sequential Inference

e Consider an HMM with continuous states

=% | @
O ® : (o)
* Consider the following sequence of queries:

Pr(8:101), Pr(S;|01.3), Pr(S3]0; 3), etc.

* Variable elimination can answer these queries
incrementally. This leads to a recursive equation:

Pr(S¢(01.¢) = Zst_l Pr(S;-1101.¢-1) Pr(S¢|Se—1) Pr(0¢|S:)
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Recursive Likelihood weighting

Pr(8:|0:.¢) = Z Pr(S;—1101. ¢—1) Pr(S;|S¢—1) Pr(0;|S;)
St-1

<'

-—

1) Propagate according N
to Pr(S;|S:—1) @ ﬁ l T ~ Pr(S¢[01.¢-1)

2) Reweight according
to Pr(0,|S,) o@D @ @ ~Pr(5l0.,)
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N~
~ Pr(S;-1101.¢-1)
17T
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Particle Filtering

« Likelihood weighting with resampling for
dynamical systems

F T“ ~ Pr(S;-1101.¢-1)
0) Resample particles J J J

~ Pr(S;_1101.¢-1)
1) Propagate according
to Pr(5t|5t_1) v ~ Pr(stlol..t—l)

2) Reweight according
to Pr(0,|S,) D @B  ~ Pr(50,.,)
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Particle Filtering Algorithm

Sample n particles s?, ..., s9 from Pr(S,)
Initialize the particle weights wy, ...,w,, to1
Fort = 1 to horizon do

Resample n particles according to the distribution implied
by the weights and assign a weight of 1 to each particle.
Sample new particles sf ~ Pr(S;|sf™*) i

Reweight each particle: w; <« w; * Pr(ot|sit) Vi
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Analysis

* The number of particles needed for good accuracy
depends on the length of the “effective history” of
the process

* The effective history is the set of past observations
that is sufficient to determine the next state

* In many applications, processes are forgetful in the
sense that only a handful of recent observations tend
to matter.
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Robot localisation

* University of Washington robotics and State Estimation
* http://www.cs.washington.edu/ai/Mobile_Robotics/mcl/
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Neato Robotics

Robotic Vacuum Cleaners by Neato Robotics

‘ —

Use particle filtering for
simultaneous localisation
and mapping

See patent:
http://www.fags.org/patents/assignee/neato-robotics-inc/
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