Project Ideas

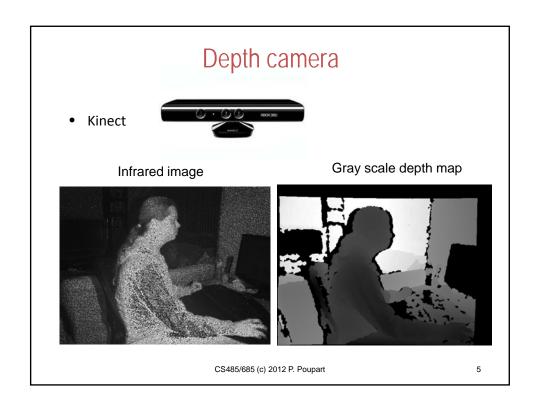
CS486/686

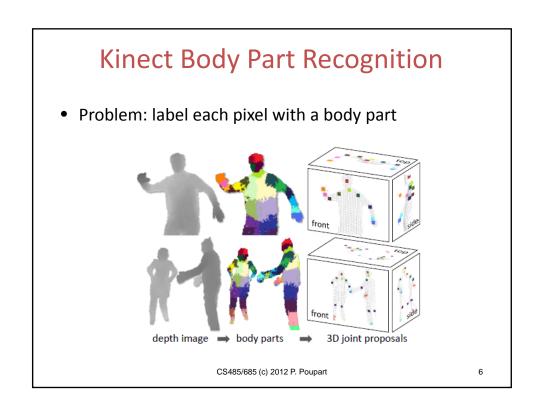
Four Types of Projects

- Literature survey
- Implementation
- Algorithm Design
- Theoretical Analysis
- All of the above are fine as long as they are related to Artificial Intelligence

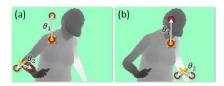
Literature Survey Examples

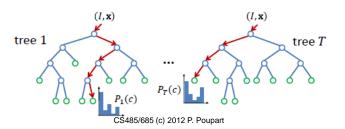
- How is motion tracking and action recognition done with a depth camera such as the Kinect (Xbox 360)? (computer vision, machine learning)
- What is the state of the art for computer go (search techniques), computer poker (game theory, machine learning), etc.?
- 3. How can we detect emotions in speech? (speech recognition, machine learning)
- 4. How can we automatically classify product reviews/blogs as positive or negative? (natural language processing, machine learning)
- 5. How are ads selected for advertisement by search engines and other websites (computational advertisement, game theory, machine learning)


Xbox 360 Kinect


- Microsoft Cambridge
- · Body part recognition: supervised learning

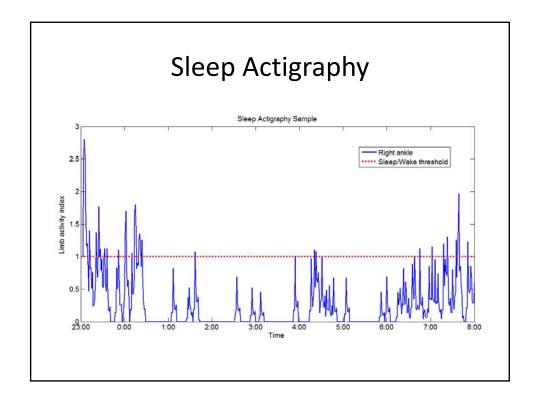
CS485/685 (c) 2012 P. Poupart


4



Kinect Body Part Recognition

• Features: depth differences between pairs of pixels



• Classification: forest of decision trees

Implementation/Algorithm design

- 1. Implement existing or new algorithms to automatically detect sleep segments from accelerometers attached at the ankles
- 2. Implement existing or new algorithms to play go, poker, etc.
- 3. Implement existing or new algorithms to recognize activities based on the accelerometer, gyroscope and compass in most smart phones.
- 4. Implement existing or new algorithms to extract entities from natural text

Theoretical Analysis

- Show how to convert a partially observable Markov decision process (POMDP) into a deterministic planning problem and vice-versa
 - POMDPs and deterministic planning are both PSCPACEcomplete
 - But most people do not believe that you can use algorithms designed for one problem to solve the other problem
- References:
 - Littman, Majercik, Pitassi, Stochastic Boolean Satisfiability.
 Journal of Automated Reasoning 27(3): 251-296 (2001)
 - The computational Complexity of propositional strips planning, Artificial Intelligence, 69(1-2):165–204, 1994.