Learning and Inference in Markov Logic Networks

CS 486/686 University of Waterloo Lecture 23: March 27, 2012

Outline

- Markov Logic Networks
 - Parameter learning
 - Lifted inference

Parameter Learning

- · Where do Markov logic networks come from?
- · Easy to specify first order formulas
- Hard to specify weights due to unclear interpretation
- Solution:
 - Learn weights from data
 - Preliminary work to learn first-order formulas from data

CS486/686 Lecture Slides (c) 2012 P. Poupart

3

Parameter tying

- Observation: first-order formulas in Markov logic networks specify templates of features with identical weights
- Key: tie parameters corresponding to identical weights
- · Parameter learning:
 - Same as in Markov networks
 - But many parameters are tied together

CS486/686 Lecture Slides (c) 2012 P. Poupart

Parameter tying

- · Parameter tying → few parameters
 - Faster learning
 - Less training data needed
- Maximum likelihood: $\theta^* = \operatorname{argmax}_{\theta} P(\operatorname{data}|\theta)$
 - Complete data: convex opt., but no closed form
 - · Gradient descent, conjugate gradient, Newton's method
 - Incomplete data: non-convex optimization
 - · Variants of the EM algorithm

CS486/686 Lecture Slides (c) 2012 P. Poupart

5

Grounded Inference

- · Grounded models
 - Bayesian networks
 - Markov networks
- Common property
 - Joint distribution is a product of factors
- Inference queries: Pr(X|E)
 - Variable elimination

CS486/686 Lecture Slides (c) 2012 P. Poupart

Grounded Inference

- Inference query: $Pr(\alpha|\beta)$?
 - α and β are first order formulas
- · Grounded inference:
 - Convert Markov Logic Network to ground Markov network
 - Convert α and β into grounded clauses
 - Perform variable elimination as usual
- This defeats the purpose of having a compact representation based on first-order logic... Can we exploit the first-order representation?

CS486/686 Lecture Slides (c) 2012 P. Poupart

7

Lifted Inference

- Observation: first order formulas in Markov Logic Networks specify templates of identical potentials.
- Question: can we speed up inference by taking advantage of the fact that some potentials are identical?

486/686 Lecture Slides (c) 2012 P. Poupar

Caching

- Idea: cache all operations on potentials to avoid repeated computation
- Rational: since some potentials are identical, some operations on potentials may be repeated.
- Inference with caching: $Pr(\alpha|\beta)$?
 - Convert Markov logic network to ground Markov network
 - Convert α and β to grounded clauses
 - Perform variable elimination with caching
 - · Before each operation on factors, check answer in cache
 - · After each operation on factors, store answer in cache

CS486/686 Lecture Slides (c) 2012 P. Poupart

9

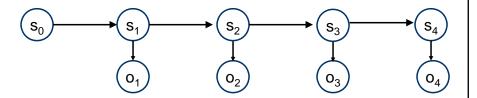
Caching

- · How effective is caching?
- · Computational complexity
 - Still exponential in the size of the largest intermediate factor
 - But, potentially sub-linear in the number of ground potentials/features
 - · This can be significant for large networks
- Savings depend on the amount of repeated computation
 - Elimination order influences amount of repeated computation

CS486/686 Lecture Slides (c) 2012 P. Poupart

Example: Hidden Markov Model

- · Conditional distributions:
 - $Pr(S_0)$, $Pr(S_{t+1}|S_t)$, $Pr(O_t|S_t)$
 - Identical factors at each time step



CS486/686 Lecture Slides (c) 2012 P. Poupart

11

Hidden Markov Models

Markov Logic Network encoding

```
obs = { Obs1, ..., ObsN }
state = { St1, ..., StM }
time = { 0, ..., T }

State(state!, time)
Obs(obs!, time)

State(+s,0)
State(+s,t) ^ State(+s',t+1)
Obs(+o,t) ^ State(+s,t)
```

CS486/686 Lecture Slides (c) 2012 P. Poupart

State Prediction

- Common task: state prediction
 - Suppose we have a belief at time t: $Pr(S_t|O_{1..t})$
 - Predict state k steps in the future: $Pr(S_{t+k}|O_{1,t})$?
- $P(S_{t+k}|O_{1..t}) = \Sigma_{S_{t..}S_{t+k-1}} P(S_{t}|O_{1..t}) \prod_{i} P(S_{t+i+1}|S_{t+i})$
- In what order should we eliminate the state variables?

CS486/686 Lecture Slides (c) 2012 P. Poupart

13

Common Elimination Orders

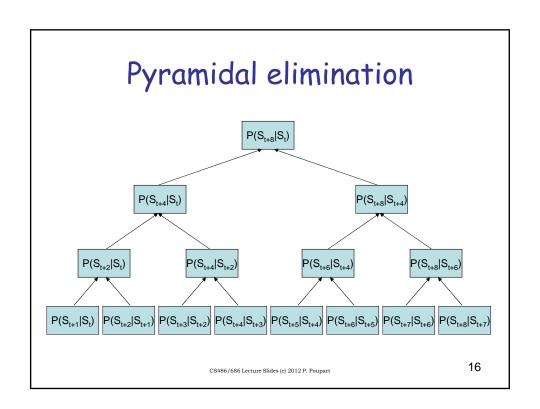
- Forward elimination
 - $P(S_{t+i+1}|O_{1..t}) = \Sigma_{S_{t+i}} P(S_{t+i}|O_{1..t}) P(S_{t+i+1}|S_{t+i})$
 - $P(S_{t+i}|O_{1..t})$ is different for all i's, so no repeated computation
- Backward elimination
 - $P(S_{t+k}|S_{t+i}) = \sum_{S_{t+i+1}} P(S_{t+k}|S_{t+i+1}) P(S_{t+i+1}|S_{t+i})$
 - $P(S_{t+k}|O_{1,t}) = \Sigma_{S_t} P(S_{t+k}|S_t) P(S_t|O_{1,t})$
 - $P(S_{t+k}|S_{t+i})$ is different for all i's, so no repeated computation
- Any saving possible?

part

Pyramidal elimination

- · Repeat until all variables are eliminated
 - Eliminate every other variable in order
- Example:
 - Eliminate S_{t+1} , S_{t+3} , S_{t+5} , S_{t+7} , ...
 - Eliminate S_{t+2} , S_{t+6} , S_{t+10} , S_{t+14} , ...
 - Eliminate $S_{\text{t+4}},\,S_{\text{t+12}},\,S_{\text{t+20}},\,S_{\text{t+28}},\,...$
 - Eliminate S_{t+8} , S_{t+24} , S_{t+40} , S_{t+56} , ...
 - Etc.

CS486/686 Lecture Slides (c) 2012 P. Poupart



Pyramidal elimination

- Observation: all operations at the same level of the pyramid are identical
 - Only one elimination per level needs to be performed
- Computational complexity:
 - log(k) instead of linear(k)

CS486/686 Lecture Slides (c) 2012 P. Poupart

17

Automated elimination

- Question: how do we find an effective ordering automatically?
 - This is an area of active research
- Possible heuristic:
 - Before each elimination, examine operations that would have to be performed to eliminate each remaining variable
 - Eliminate variable that involves computation identical to the largest number of other variables (greedy heuristic)

CS486/686 Lecture Slides (c) 2012 P. Poupart

Lifted Inference

- Variable elimination with caching still requires conversion of the Markov logic network to a ground Markov network, can we avoid that?
- Lifted inference:
 - Perform inference directly with first-order representation
 - Lifted variable elimination is an area of active research
 - · Complicated algorithms due to first-order representation
 - Overhead due to the first-order representation often greater than savings in repeated computation
- · Alchemy
 - Does not perform exact inference
 - Uses lifted approximate inference
 - · Lifted belief propagation
 - Lifted MC-SAT (variant of Gibbs sampling)

CS486/686 Lecture Slides (c) 2012 P. Poupart

19

Next Class

· Course wrap-up

20

CS486/686 Lecture Slides (c) 2012 P. Poupart