(PRINT) Name	Student No	

Signature

Total Mark /100

University of Waterloo

Computer Science 486/686 – Introduction to Artificial Intelligence

Midterm Test 2023 June 23 Time: 4:30 pm – 5:50 pm

> Time: 80 minutes Total marks: 100

Answer all questions on this paper. No books or other materials may be used. Non-programmable calculators are permitted, but not personal computers.

This examination has 7 pages. Check that you have a complete paper.

1	/ 20
2	/ 19
3	/ 20
4	/ 20
5	/ 21
Total	/ 100

Question 1 [20 pts] Search techniques

Consider the following generic search procedure:

- 1. Let $PQ = \{s\}$ i.e., priority queue consists of the start state
- 2. Loop until priority queue is empty
 - a. Remove the first node n from PQ
 - b. If *n* is a goal state then stop; report success
 - c. Otherwise add each neighbour of n to PQ

Briefly explain how nodes should be added to the priority queue (step 2c) to emulate each of the following algorithms.

a) [5 pts] Depth-first search

insert new nodes at the beginning of the priority queue

b) [5 pts] Breadth-first search

insert new nodes at the end of the priority queue

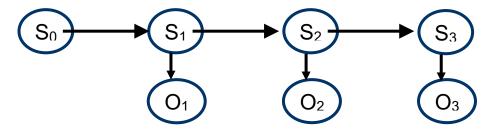
c) [5 pts] Greedy best-first search

insert new nodes based on their h value, keeping the nodes sorted by ascending h value.

d) [5 pts] A* search

insert new nodes based on their f value, keeping the nodes sorted by ascending f value.

Question 2 [19 pts] Every term, the university must design a schedule for the final exams. Ideally the schedule should be conflict free, meaning that students should not have to write two exams simultaneously.


a) [9 pts] Consider 5 students (s₁, s₂, s₃, s₄ and s₅) and 5 courses (c₁, c₂, c₃, c₄ and c₅) such that s₁ and s₂ are taking c₁; s₁, s₃ and s₄ are taking c₂; s₂ and s₄ are taking c₃; s₃ is taking c₄; and s₄ and s₅ are taking c₅. Suppose that the 5 courses must be scheduled in 3 time slots t₁, t₂ and t₃. Describe how you would encode this scheduling problem as a constraint satisfaction problem. List the variables and their domain as well as the constraints.

variables: c_1, c_2, c_3, c_4, c_5 domain: $c_i \in \{t_1, t_2, t_3\}$ constraints : $c_1 \neq c_2, c_1 \neq c_3, c_2 \neq c_4, c_2 \neq c_3, c_2 \neq c_5, c_3 \neq c_5$

- **b) [10 pts]** Suppose that you use backtracking search with the most constrained variable and least constraining value heuristics. Show the search tree expanded by backtracking search until a satisfying assignment is found for the CSP in a). Indicate in which order the nodes are expanded in the search tree.
 - c1 = t1 (all variables are equally constrained so start with any variable)
 - c2 = t2 (c2 and c3 can only take two values)
 - c3 = t3 (c3 can only take one value)
 - c5 = t1 (c5 can only take one value)
 - c4 = t1 (c4 is the only variable left)

no backtracking necessary

Question 3 [20 pts] Consider a first-order hidden Markov model.

a) [6 pts] A hidden Markov model can be viewed as a Bayesian network with the same structure that repeats at each time step. Normally, when specifying a Bayesian network, we need to provide a conditional probability table for each variable in the network. However, an HMM can be completely specified by providing $Pr(S_t|S_{t-1})$, $Pr(O_t|S_t)$ and $Pr(S_0)$. What assumption allows us to specify an HMM with those three distributions only? Explain briefly.

Stationarity, which means that $Pr(S_t|S_{t-1}) = Pr(S_{t+1}|S_t)$ and $Pr(O_t|S_t) = Pr(O_{t+1}|S_{t+1})$ for all t.

- b) [8 pts] Conditional independence:
 - i) [4 pts] Is S_3 independent of S_1 given S_2 ? Explain briefly

Yes: the path between S1 and S3 is blocked by S2

ii) [4 pts] Is O_3 independent of O_1 given O_2 ? Explain briefly.

No: the path between O₁ and O₃ is open

c) [6 pts] Suppose you want to predict S_3 based on O_1 only (i.e., $Pr(S_3|O_1)$). What are the relevant and irrelevant variables for this query?

Relevant: S₀, S₁, S₂, S₃, O₁ **Irrelevant:** O₂, O₃ **Question 4 [20 pts]** Consider the problem of deciding whether or not to go on a picnic based on different attributes of the day. Here is a set of examples classified based on whether or not it was a good idea to go on a picnic. Besides the table is a possible decision tree for this problem.

Example	Rainy	Windy	Warm	Summer	Sunday	Picnic	Raining
X_1	Т	F	F	F	F	False	т
X_2	F	Т	F	F	Т	True	
X ₃	F	Т	Т	Т	Т	False	false Windy
X4	F	Т	Т	F	Т	False	T / F
X_5	Т	F	F	F	Т	False	I F
X ₆	F	Т	F	F	Т	False	true false

a) [6 pts] Indicate the class of each example according to the decision tree. Indicate also whether each example is correctly classified.

Example	X1	X2	X3	X4	X5	X ₆
Picnic	F	Т	Т	Т	F	Т
(true/false)						
Correct class?	Y	Y	Ν	Ν	Y	Ν
(yes/no)						

b) [3 pts] Suppose you could turn one leaf of the decision tree into a new attribute test, which leaf would that be? No justification required.

i) Rainy = T ii) Windy = T iii) Windy = F

Answer: ii)

Example	Rainy	Windy	Warm	Summer	Sunday	Picnic	Raining
\mathbf{X}_1	Т	F	F	F	F	False	T F
X_2	F	Т	F	F	Т	True	
X_3	F	Т	Т	Т	Т	False	false Windy
X4	F	Т	Т	F	Т	False	T
X_5	Т	F	F	F	Т	False	I F
X6	F	Т	F	F	Т	False	true false

c) [8 pts] For the leaf that you picked in b), compute the information gain of each possible attribute test. Which attribute test provides the highest information gain?

Hint: Entropy $(p/(n+p), n/(n+p)) = -p/(n+p) \log_2 p/(n+p) - n/(p+n) \log_2 n/(p+n)$ InformationGain(attribute) = leaf entropy - expected entropy of each attribute branch

Leaf entropy: $-1/4 \log_2 \frac{1}{4} - \frac{3}{4} \log_2 \frac{3}{4} = 0.811278$

Expected remaining entropy for warm: $\frac{1}{2}(-\frac{1}{2}\log_2\frac{1}{2}-\frac{1}{2}\log_2\frac{1}{2})+\frac{1}{2}(-0\log_2 0-1\log_2 1)=0.5$

Expected remaining entropy for summer: ³/₄ (- 1/3 log₂ 1/3 - 2/3 log₂ 2/3) + ¹/₄ (-1 log₂ 1 - 0 log₂ 0) = 0.68872

Expected remaining entropy for Sunday: $1(-\frac{1}{4}\log_2\frac{1}{4} - \frac{3}{4}\log_2\frac{3}{4}) = 0.811278$

InfoGain(warm) = 0.811278 - 0.5 = 0.311278 InfoGain(summer) = 0.811278 - 0.68872 = 0.122556 InfoGain(Sunday) = 0.811278 - 0.811278 = 0

Best attribute: warm

d) [3 pts] There is *no* decision tree consistent with the data. True or false? No justification required.

True

Question 5 [21 pts] Are the following statements true or false? No justification required.

a) [3 pts] In Bayesian learning, the prior is subjective and therefore it is okay for different people to have different prior distributions.

True

b) [3 pts] Admissible heuristics are necessarily consistent.

False

c) [3 pts] All search algorithms take exponential time in the worst case.

True

d) [3 pts] Variable elimination takes exponential time in the worst case.

True

e) [3 pts] Bayesian learning, maximum a posteriori hypothesis and maximum likelihood hypothesis all make the same predictions when an infinitely large amount of training data is used.

True

f) [3 pts] Structural causal models encode only deterministic relations that are given by some equations.

True

g) [3 pts] Causal Bayesian networks can be converted into equivalent structural causal models, but not the other way around.

False