
 

1 

 

 
Final Examination 
Term:  __Spring__________ Year: __2023______ 
 

 
Student name:

 
 
______________________ 
(First name)

 
 
_______________________ 
(Middle name)

 
 
________________________ 
(Last name)

 
Waterloo student identification number: ______________________________________________________ 
 

Course abbreviation and number: _____CS486/686________________________________________________ 
 

Course title: ______Introduction to Artificial Intelligence___________________________________________ 
 

Section(s): _______001-002-003______________________________________________________________ 
 

Sections combined course(s): _____001-002-003__________________________________________________ 
 

Section numbers of combined course(s): ___001-002-003___________________________________________ 
 

Name of instructor(s): _____Pascal Poupart and Sriram Ganapathi____________________________________ 
 

Date of exam: ______August 4, 2023__________________________________________________________ 
 

Exam period start time: ___16:00_________________ Exam period end time: ____18:30__________________ 
 

Duration of exam: ______2 hours 30 minutes____________________________________________________ 
 

Number of exam pages: (includes cover page) __34________________________________________________
 

Exam type: (select one)  

! Closed book

 

⬜ Special materials

 

⬜ Open book
 

 
 
Materials allowed: (select one) 
 

⬜ No additional materials are allowed 

! Materials allowed are listed below 

___Non programmable calculator_______________________________________________________ 
___________________________________________________________________________________ 
___________________________________________________________________________________ 
 

Exams are printed double sided on white paper. 

! Select this box if second side of paper is to be used for rough work calculations.  

 
Marking scheme: 
Question Score Question Score 

1                    /16 6                    /12 



 

2 

Question Score Question Score 

2                    /12 7                    /12 

3                    /12 8                    /12                    

4                    /12   

5                    /12 Total                  /100 



 

3 

!  



 

4 

Question 1 [16 pts] Are the following statements true or false? No justification required. 
 

a) [2 pts] Temporal difference methods update the current value estimate at a state using the 
returns from a full trajectory until the end of the episode from that state. 
 

 False (these are monte-carlo methods. TD methods use one step returns to update the current 
 estimates). 
 

b) [2 pts] Model-based RL methods are sample inefficient compared to model-free methods. 
  
 False (model based methods are more sample efficient as arbitrary experience samples can be 
 obtained from the transition and reward models to update the value estimates. The agent does 
 not need to wait for true experiences from interactions with the environment to update the value 
 estimate for a particular state action pair). 
 

c) [2 pts] A cooperative stochastic game is guaranteed to have a unique pure strategy Nash 
Equilibrium with unique strategies for each player. 

  
 False (they can have multiple NE having the same utilities.) 
 

d) [2 pts] A dominant strategy equilibrium is guaranteed to be a Nash equilibrium as well. 
  
 True 
 

e) [2 pts] A Pareto optimal outcome is guaranteed to Pareto dominate every other outcome in a 
normal form game. 

 
 False (the Pareto optimal outcome is not Pareto dominated by any other outcome) 
 

f) [2 pts] In Thompson Sampling, sampling a finite number of samples from the posterior 
distribution enables exploration. 

 
 True 
 

g) [2 pts] The backtracking search algorithm for constraint satisfaction problems is guaranteed to 
find a solution when there exists one. 
 
Accept both True/False since it is true in general, but there are edge cases where it is false (i.e., 
when the branching factor is infinite or the length of a path is infinite) 
 

h) [2 pts] In a decision network, dynamic programming optimizes the decisions in chronological 
order since later decisions depend on earlier decisions. 
False (dynamic programming optimizes decisions in the reverse order) 
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 Question 2 [12 pts] Search techniques 
 

a) [8 pts] Consider the following graph and 2 heuristics for estimating the cost of reaching the 
goal node G from any other node: 

 
 
 

Node  h1  h2  
 A     6  21  
 B    14  13   
 C     5   3   
 D    16  13   
 E     4   2    
 F     9   8   
 G     0   0    

 
 
 

 
i) [4 pts] Indicate for each heuristic, h1 and h2, whether a least cost path is guaranteed to be 

found when searching for a path from any node to the goal node G using A*? Explain 
briefly why. 
 
h1 is not guaranteed to find a least cost path since it is not admissible (h1(B)=14 which 
overestimates the lowest cost of 13) 
 
h2 is not guaranteed to find a least cost path since it is not consistent.  More precisely, 
the cost estimate is not increasing monotonically from A to C:  21 = h2(A) > 10+h2(C) = 
13 

 
 
 
 
 
 
 
 
 

. 
 
 
 

A 

B C D 

E F 

G 

8 9 10 

5 9 

6 

10 3 

10 7 
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ii) [4 pts] Indicate the path found and the nodes expanded to go from A to G in A* search for 
each heuristic. 

 

 
!  
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Question 2 (continued) 
 

b) [4 pts] Suppose that for a given search problem you design a heuristic that overestimates the cost-
to-goal by at most ε.  In the worst case, how far from optimal will be the solution path found by 
A* when using this heuristic? Explain briefly your reasoning. 
 
 
In the worst case, the solution path found may cost ε more than the optimal one.  
 
Explanation: The optimal path may be overestimated by at most ε and therefore the 
algorithm would not find a solution that costs more than the optimal solution + ε 

  
!  
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Question 3 [12 pts] Consider the following Markov Decision Process (MDP) with discount factor g = 
0.9. Upper case letters A, B, C represent states, edges represent the actions (lower case letters ab, ac, 
ba, ca, cb), and signed integers represent rewards. The reward function is conditioned on the current 
state and action only (for example, performing action ab at state A produces a reward of -4 irrespective 
of the next state). The transition probabilities are as follows: P(B|A, ab) = 1, P(C|A, ac) = 1, P(A|B, ba) 
= 1, P(C|B,bc) = 1, P(A|C,ca) = 3/4, P(C|C,ca) = 1/4, P(B|C,cb) = 1. 
 
Hint:  Bellman’s equation is Vt(s) = maxa R(s,a) + g Ss’ Pr(s’|s,a) Vt-1(s’) 
 

 
 

a) [6 pts] Consider a policy 𝜋1(s) that provides 𝜋1(A) = ab, 𝜋1(B) = bc and 𝜋1(C) = ca actions from 
state s. Assume that we are running an iterative policy evaluation to determine the value of this 
policy. Also assume that we are starting with an initial value function of V0(A) = V0(B) = V0(C) 
= 1, where the subscript denotes each iterative step of iterative policy evaluation. Now compute 
the values obtained for two iterations of iterative policy evaluation (i.e., one value for each state 
for every iteration) to compute a new value function V1(s) and V2(s). 
 
Iteration 1:  
 
𝑉1(𝐴) = 𝑅(𝐴, 𝑎𝑏) + 𝛾∑

𝑠′
𝑃𝑟(𝑠′|𝑠, 𝜋(𝑠))𝑉𝜋(𝑠′) = −4 + (0.9 × 𝑉0(𝐵)) = −3.1 

 
𝑉1(𝐵) = 𝑅(𝐵, 𝑏𝑐) + 𝛾∑

𝑠′
𝑃𝑟(𝑠′|𝑠, 𝜋(𝑠)) = −1 + 0.9 × 𝑉0(𝐶) = −0.1 

 
𝑉!(𝐶) = 𝑅(𝐶, 𝑐𝑎) + 𝛾∑

"!
𝑃𝑟(𝑠#|𝑠, 𝜋(𝑠))𝑉$(𝑠#) = 2 + 0.9 × (0.25 × 𝑉%(𝐶) + 0.75 × 𝑉%(𝐴))

= 2.9 
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Iteration 2: 
 
𝑉2(𝐴) = 𝑅(𝐴, 𝑎𝑏) + 𝛾∑

𝑠′
𝑃𝑟(𝑠′|𝑠, 𝜋(𝑠))𝑉𝜋(𝑠′) = −4 + (0.9 × 𝑉1(𝐵)) = −4.09 

 
𝑉2(𝐵) = 𝑅(𝐵, 𝑏𝑐) + 𝛾∑

𝑠′
𝑃𝑟(𝑠′|𝑠, 𝜋(𝑠)) = −1 + 0.9 × 𝑉1(𝐶) = 1.61 

 
𝑉&(𝐶) = 𝑅(𝐶, 𝑐𝑎) + 𝛾∑

"!
𝑃𝑟(𝑠#|𝑠, 𝜋(𝑠))𝑉$(𝑠#) = 2 + 0.9 × (0.25 × 𝑉!(𝐶) + 0.75 × 𝑉!(𝐴))

= 0.56 
 
 
 
 
 
 
 
 
 
 
 
 

!  
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Question 3 (continued) 
 

b) [3 pts] Apply one iteration of greedy policy improvement to compute a new, deterministic 
policy 𝜋2(s) assuming that V1(A) = V1(B) = 2 and V1(C) = 5 (subscript denotes policy iteration 
steps) are the converged values obtained at the end of iterative policy evaluation. 
 
Solution: 
 
𝜋(𝐴) = arg𝑚𝑎𝑥

'
(𝑅(𝐴, 𝑎𝑏) + 𝛾∑

("
𝑃𝑟(𝑠)|𝑠, 𝑎𝑏)𝑉(𝑠)), 𝑅(𝐴, 𝑎𝑐) + 𝛾∑

("
𝑃𝑟(𝑠)|𝑠, 𝑎𝑐)𝑉(𝑠))) 

 
= arg𝑚𝑎𝑥

'
(−4 + 0.9 × 2,2 + 0.9 × 5) 

 
= arg𝑚𝑎𝑥

'
(−2.2,6.5) = 𝑎𝑐 

 
 
𝜋(𝐵) = arg𝑚𝑎𝑥

'
(𝑅(𝐵, 𝑏𝑎) + 𝛾∑

("
𝑃𝑟(𝑠)|𝑠, 𝑏𝑎)𝑉(𝑠)), 𝑅(𝐵, 𝑏𝑐) + 𝛾∑

("
𝑃𝑟(𝑠)|𝑠, 𝑏𝑐)𝑉(𝑠))) 

 
= arg𝑚𝑎𝑥

'
(1 + 0.9 × 2,−1 + 0.9 × 5) 

 
= arg𝑚𝑎𝑥

'
(2.8,3.5) = 𝑏𝑐 

 
𝜋(𝐶) = arg𝑚𝑎𝑥

'
(𝑅(𝐵, 𝑐𝑎) + 𝛾∑

("
𝑃𝑟(𝑠)|𝑠, 𝑏𝑎)𝑉(𝑠)), 𝑅(𝐵, 𝑐𝑏) + 𝛾∑

("
𝑃𝑟(𝑠)|𝑠, 𝑏𝑐)𝑉(𝑠))) 

 
= arg𝑚𝑎𝑥

'
(2 + 0.9 × (0.25 × 5 + 0.75 × 2),4 + 0.9 × 2) 

 
= arg𝑚𝑎𝑥

'
(4.475,5.8) = 𝑐𝑏 
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c) [3 pts] Apply one iteration of value iteration (i.e., compute one value for each state) to compute 
a new value function V2(s) assuming V1(A) = V1(B) = V1(C) = 2. 
 

 
 Solution 
 
 𝑉2(𝐴) = 𝑚𝑎𝑥(𝑅(𝐴, 𝑎𝑏) + 𝛾 × ∑

𝑠′
𝑃𝑟(𝑠′|𝑠, 𝑎𝑏)𝑉1(𝑠′), 𝑅(𝐴, 𝑎𝑐) + 𝛾 × ∑

𝑠′
𝑃𝑟(𝑠′|𝑠, 𝑎𝑐)𝑉1(𝑠′)) 

 = 𝑚𝑎𝑥(−4 + 0.9 × 2,2 + 0.9 × 2) = 3.8 
 
 
 𝑉2(𝐵) = 𝑚𝑎𝑥(𝑅(𝐵, 𝑏𝑎) + 𝛾 × ∑

𝑠′
𝑃𝑟(𝑠′|𝑠, 𝑏𝑎)𝑉1(𝑠′), 𝑅(𝐵, 𝑏𝑐) + 𝛾 × ∑

𝑠′
𝑃𝑟(𝑠′|𝑠, 𝑏𝑐)𝑉1(𝑠′)) 

 = 𝑚𝑎𝑥(1 + 0.9 × 2, −1 + 0.9 × 2) = 2.8 
 
 
 𝑉2(𝐶) = 𝑚𝑎𝑥(𝑅(𝐶, 𝑐𝑎) + 𝛾 × ∑

𝑠′
𝑃𝑟(𝑠′|𝑠, 𝑏𝑎)𝑉1(𝑠′), 𝑅(𝐶, 𝑐𝑏) + 𝛾 × ∑

𝑠′
𝑃𝑟(𝑠′|𝑠, 𝑏𝑐)𝑉1(𝑠′)) 

 = 𝑚𝑎𝑥(2 + 0.9 × 2,4 + 0.9 × 2) = 5.8!  
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Question 4 [12 pts] Reinforcement Learning 
 

a) [4 pts] Consider a system with two states (s1 and s2) and two actions (a1 and a2). Perform 
tabular Q-learning using a fixed learning rate of α = 0.8 and a discount factor of γ = 0.9 for each 
step. The state-action value table entries Q(s, a) are initialized to zero. For each step the current 
state, action, reward, and next state are given as (sk, ak, rk, sk+1). Note that rewards are obtained 
immediately upon execution of an action at a state (independent of the next state). Here is the 
experience the agent has in the first four iterations respectively: 
 
(s1, a1, 5, s1) 
(s1, a2, 10, s2) 
(s2, a1, 5, s1) 
(s1, a1, −5, s2) 
 
Find the value for Q(s1, a1), Q(s1, a2), Q(s2, a1) and Q(s2, a2) using the experiences above by 
iteratively updating Q-values for each experience using the tabular Q-learning algorithm. Each 
update uses the most recent Q-estimates in the Q-table for the updates. 
 
Hint: Temporal difference update equation: Q(s, a) ← Q(s, a) + α(r + γ maxa′ Q(s′, a′) − Q(s, a)) 
 
Use the first experience (s1, a1, 5, s1) for this update 
Q(s1, a1) = 
 
𝑄(𝑠*, 𝑎*) = 𝑄(𝑠*, 𝑎*) + 𝛼(𝑟 + 𝛾𝑚𝑎𝑥'"

𝑄(𝑠*, 𝑎)) − 𝑄(𝑠*, 𝑎*)) 
= 0 + 0.8(5 + 0.9 × 0 − 0) = 4 
 
 
Use the second experience (s1, a2, 10, s2) for this update 
Q(s1, a2) = 
 
𝑄(𝑠*, 𝑎+) = 𝑄(𝑠*, 𝑎+) + 𝛼(𝑟 + 𝛾𝑚𝑎𝑥'"

𝑄(𝑠+, 𝑎)) − 𝑄(𝑠*, 𝑎+)) 
= 0 + 0.8(10 + 0.9 × 0 − 0) = 8 
 
 
Use the third experience (s2, a1, 5, s1) for this update 
Q(s2, a1) = 
 
𝑄(𝑠+, 𝑎*) = 𝑄(𝑠+, 𝑎*) + 𝛼(𝑟 + 𝛾𝑚𝑎𝑥'"

𝑄(𝑠*, 𝑎)) − 𝑄(𝑠+, 𝑎*) 
= 0 + 0.8(5 + 0.9 × 8 − 0) = 9.76 
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Use the fourth experience (s1, a1, −5, s2) for this update 
Q(s1, a1) = 
 
 
𝑄(𝑠*, 𝑎*) = 𝑄(𝑠*, 𝑎*) + 𝛼(𝑅 + 𝛾 × 𝑚𝑎𝑥'"

𝑄(𝑠+, 𝑎)) − 𝑄(𝑠*, 𝑎*)) 
 
= 4 + 0.8(−5 + 0.9 × 9.76 − 4) = 3.8272  

!  
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Question 4 (continued) 
 

b) [8 pts] Consider the following pseudo-code for an implementation of the Q-learning algorithm 
for a discrete state and action space environment: 
 
Algorithm: Q-learning 
------------------------------------------- 
1: Set t = 0, get the initial state s0. 
2: For all states s, and actions a ∈ A, let Q0(s, a) = 0. Let ε = 0.05 and α = 0.1 
3: Define policy derived from Q to return a random action with probability ε, and a     
    greedy action (based on current Q-estimates) with probability 1 − ε 
4: while Q has not converged do 
5:  Select and execute action a at current state s using the policy derived from Q 
6:  Observe the next state s′ and reward r 
7:  Update Q-values:  Q(s, a) ← Q(s, a) + α(r + γ maxa′ Q(s′, a′) − Q(s, a)) 
8:  Let s ← s′ 
9: end while 

 
i) [2 pts] The pseudo-code has a while loop that tests for convergence. Would the Q-values 
converge as it is? If not, what changes would you do to make sure that the pseudo-code 
would converge? 
 
This algorithm will not converge as the learning rate is fixed. To fix the problems, update 
the learning rate using the formula 𝛼 ← 1/𝑛(𝑠, 𝑎) where 𝑛(𝑠, 𝑎) denotes the number of 
times the current state 𝑠 and action 𝑎 have been visited.  
 
 
 
 
 
 
 
 
 

 
 
ii) [2 pts] Let’s consider other exploration techniques instead of ε-greedy. Mention two 
other exploration strategies you could consider. 
 
 
 
The two other techniques are Boltzmann exploration and Upper confidence bound (UCB). 
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Question 4 (continued) 
 

Algorithm: Q-learning (repeated for convenience) 
------------------------------------------- 
1: Set t = 0, get the initial state s0. 
2: For all states s, and actions a ∈ A, let Q0(s, a) = 0. Let ε = 0.05 and α = 0.1 
3: Define policy derived from Q to return a random action with probability ε, and a     
    greedy action (based on current Q-estimates) with probability 1 − ε 
4: while Q has not converged do 
5:  Select and execute action a at current state s using the policy derived from Q 
6:  Observe the next state s′ and reward r 
7:  Update Q-values:  Q(s, a) ← Q(s, a) + α(r + γ maxa′ Q(s′, a′) − Q(s, a)) 
8:  Let s ← s′ 
9: end while 

 
iii) [2 pts] Let"s modify the implementation of Q-learning to return the transition and reward 
model of the environment as well. What additional lines of code would you insert between 
lines 6 and 7 in the provided pseudo-code to update the transition and the reward model? 
 
 
Solution: 
This would require a model-based algorithm. At each time step in the learning loop, an 
estimate of the transition model and reward model will be maintained and updated using 
empirical averages. 
 
Transition Model: 𝑃𝑟(𝑠#|𝑠, 𝑎) ←

⬚ ((",+,"!)
((",+)

 
 
Reward Model: 𝑅(𝑠, 𝑎) ←

⬚ -.(((",+)/!)0(",+)
((",+)

 
 
 

 
 
 
iv) [2 pts] Let"s extend this Q-learning implementation to a continuous state space 
environment. What Q-function representation would you use to allow Q-learning to work 
for continuous states? 
 
 
Neural networks or some function approximator. 
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Question 5 [12 pts] Game Theory 
 
There are two players, Alice and Bob, who are trying to decide between choosing to play football (F), 
baseball (B) or hockey (H). Here, Alice is the row player and Bob is the column player. They are in a 
two-player normal form game with utilities as shown in Table 1. Using this table answer the questions 
that follow. 
 

 F B H 
F (2, 7) (1, -4) (-1, -1) 
B (2, 4) (2, 4) (-2, 5) 
H (-1, -1) (4, 0) (7, 2) 

                            Table 1: Two-player normal form game 
 

a) [3 pts] Are there any dominated strategies for the two players? If so, perform iterative 
elimination of dominated strategies until there are no more dominated strategies. Draw the 
resulting normal form game after each iterative elimination. 

 
  
 Solution:  
  
 For Bob, playing strategy B is strictly dominated by strategy H. The resulting normal form 
  game after elimination is as follows: 
 

 F H 

F (2, 7) (-1, -1) 

B (2, 4) (-2, 5) 

H (-1, -1) (7, 2) 
   
 
 In this resulting game, Alice has strategy B to be weakly dominated by F. The resulting normal 
  form game after elimination is as follows:  
 
 

 F H 

F (2, 7) (-1, -1) 

H (-1, -1) (7, 2) 
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Question 5 (continued) 
 

b) [3 pts] Consider the following normal form game with two players Alice and Bob, where Alice 
is the row player and Bob is the column player. Each player can choose between two actions C 
and D. Their utilities are provided in the table below.  
 

 C D 
C (6, 6) (2, 8) 
D (8, 2) (0, 0) 

                            Table 2: Two-player normal form game 
 

In Table 2, are there any pure strategy Nash equilibria? If so, write down all the pure strategy 
Nash equilibria, with your explanation for why these are pure strategy Nash equilibria. 

 
 
 Solution 
  
 There are two pure strategy Nash equilibria in this game. They are {C,D} and {D, C}. In other 
 words, D is the best response of Bob when Alice plays C and C is the best response of Bob 
 when Alice plays D and vice-versa.  
 
 
 
 
 
 
 
 
 
 

c) [3 pts] In Table 2, are there any Pareto optimal outcomes? If so, write down all the Pareto 
optimal outcomes with your explanation for why these are Pareto optimal outcomes. 

 
Solution: 

 
 (C,C), (C,D) and (D,C) are pareto optimal outcomes since no other outcome pareto dominates 
 these outcomes.  
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Question 5 (continued) 
 

d) [3 pts] Find the mixed strategy Nash equilibrium in the normal form game given in Table 2. 
Also report the utilities that Alice and Bob will get at the mixed strategy Nash equilibrium. 
 

 C D 
C (6, 6) (2, 8) 
D (8, 2) (0, 0) 

                            Table 2: Two-player normal form game (repeated for convenience) 
 
 
Let us assume that Alice plays C with probability p and Bob plays C with probability q. 
 
If Bob has to be indifferent between its two actions: 
 
𝑢𝐵𝑜𝑏(𝐶) = 6𝑝+ (1−𝑝)2 = 4𝑝+2  
𝑢𝐵𝑜𝑏(𝐷) = 8𝑝+ (1−𝑝)0 = 8𝑝  
⟹ 𝑝 = 1/2  
 
If Alice has to be indifferent between its two actions:  
 
𝑢𝐴𝑙𝑖𝑐𝑒(𝐶) = 6𝑞+ (1− 𝑞)2 = 4𝑞+2  
𝑢𝐴𝑙𝑖𝑐𝑒(𝐷) = 8𝑞 = 8𝑞  
𝑢𝐴𝑙𝑖𝑐𝑒(𝐷) = 8𝑞 = 8𝑞  
⟹ 𝑞 = 1/2 

 
 Here the mixed strategy NE is obtained when Alice plays C with probability 1/2 and D with 
 probability 1/2. In this case, Bob plays C with probability 1/2 and D with probability 1/2. The 
 utility of Bob is 4 and the utility of Alice is also 4 at the mixed strategy NE. !  
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Question 6 [12 pts] Consider the problem of deciding whether or not to go on a picnic based on 
different attributes of the day.   Here is a set of examples classified based on whether or not it was a 
good idea to go on a picnic.  In this question you will use maximum likelihood to learn the parameters 
of the naïve Bayes model besides the table. 
 

 
 
 
 
 
 
 
 

a) [4 pts] Compute the maximum likelihood (ML) hypothesis for the naïve Bayes model besides 
the table above.  More precisely, below, fill in the conditional probability tables of the 
maximum likelihood hypothesis.  Do not use add-one Laplace smoothing. 
 

P(Picnic) Picnic 
T F 

 1/6=0.17 5/6=0.83 

 

P(Rainy|Picnic) Rainy 
T F 

Picnic 
True 0 1 

False 2/5=0.4 3/5=0.6 

 

P(Windy|Picnic) Windy 
T F 

Picnic 
True 1 0 

False 3/5=0.6 2/5=0.4 

 
!  

Example Rainy Windy Warm  Summer Sunday Picnic 
X1 T F F F F False 
X2 F T F F T True 
X3 F T T T T False 
X4 F T T F T False 
X5 T F F F T False 
X6 F T F F T False  

Rainy 

Picnic 

Windy 
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Question 6 (continued) 
 

b) [4 pts] Using the maximum likelihood hypothesis computed in a), classify examples X1 and X2.  
More precisely, compute P(Picnic|Rainy,Windy) for X1 and X2 and select the class with the 
highest probability. 
 
Classification of 𝑿1: 
 
𝑷(𝑷 = 𝑻|𝑹 = 𝑻,𝑾 = 𝑭) ∝ 𝑷(𝑷 = 𝑻)𝑷(𝑹 = 𝑻|𝑷 = 𝑻)𝑷(𝑾 = 𝑭|𝑷 = 𝑻)  
= 8*

4
9 (0)(0) = 0  

 
𝑷(𝑷 = 𝑭|𝑹 = 𝑻,𝑾 = 𝑭) ∝ 𝑷(𝑷 = 𝑭)𝑷(𝑹 = 𝑻|𝑷 = 𝑭)𝑷(𝑾 = 𝑭|𝑷 = 𝑭)  

= :
5
6< :

2
5< :

2
5< =

2
15 

Hence: 𝑷(𝑷 = 𝑻|𝑹 = 𝑻,𝑾 = 𝑭) = 5
56 #

$%
= 0 and the prediction is Picnic=False 

 
Classification of 𝑿2: 
 
𝑷(𝑷 = 𝑻|𝑹 = 𝑭,𝑾 = 𝑻) ∝ 𝑷(𝑷 = 𝑻)𝑷(𝑹 = 𝑭|𝑷 = 𝑻)𝑷(𝑾 = 𝑻|𝑷 = 𝑻)  
= 8*

4
9 (1)(1) = *

4
  

 
𝑷(𝑷 = 𝑭|𝑹 = 𝑭,𝑾 = 𝑻) ∝ 𝑷(𝑷 = 𝑭)𝑷(𝑹 = 𝑭|𝑷 = 𝑭)𝑷(𝑾 = 𝑻|𝑷 = 𝑭)  

= :
5
6< :

3
5< :

3
5< =

3
10 

Hence: 𝑷(𝑷 = 𝑻|𝑹 = 𝑻,𝑾 = 𝑭) =
$
&

$
&6

'
$(
= 7

*8
= 0.36 and the prediction is Picnic=False 
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c) [4 pts] In the naïve Bayes model besides the table above, are Rainy and Windy independent 
given Picnic?  Justify.   Is this independence/dependence assumption realistic? 
 
Rainy and Windy are independent of each other in the Naïve Bayes model.   
 
According to the rules of d-separation (rule 2), observing picnic blocks the path between 
rainy and windy.   
 
This independence assumption is not realistic since clearly wind and rain are correlated 
irrespective of whether we go on a picnic or not. 

  
 
!  
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Question 7 [12 pts]  
 

a) [6 pts] Consider the following sigmoid perceptron.   
 

i) [2 pts] What is the output of this sigmoid perceptron for  
the inputs 𝑥1 = 3, 𝑥2 = 0.5?   Tip: 𝜎(𝑎) = *

*69)*
 

 
 
𝝈Y1(−0.2) + 3(0.1) + 0.5(−0.2)Z = 𝝈(0) = 0.5 
 
 
 
 
 
 
 
 
 

ii) [3 pts] Suppose the correct output is 𝑦 = 0.1.  You"d like to train this perceptron by  
minimizing the squared error (i.e., 𝐸 = 0.5(𝑦 − 𝑜𝑢𝑡𝑝𝑢𝑡)&) with gradient descent. What is 
the partial derivative of the squared error with respect to weight 𝑤1?  
Tip: 𝜎′(𝑎) = 𝜎(𝑎)(1 − 𝜎(𝑎)) 
 
 
1𝑬
1𝒘"

= 0.5(2)(𝒚 − 𝒐𝒖𝒕𝒑𝒖𝒕) 1𝑶𝒖𝒕𝒑𝒖𝒕
1𝒘"

  

= (𝒚 − 𝒐𝒖𝒕𝒑𝒖𝒕)(𝝈(𝒂)Y1 − 𝝈(𝒂)Z :𝒂
:𝒘$

  

= (𝒚 − 𝒐𝒖𝒕𝒑𝒖𝒕)(𝝈(𝒂)Y1 − 𝝈(𝒂)Z𝒙*  
= (0.1 − 0.5)(𝝈(0.5)Y1 − 𝝈(0.5)Z3 = −0.1165  

 
 
 

 
 
 
 
!  

𝑥1 

𝑥2 

1 
𝑤1

= 0.1 
𝑤2

= −0.2 

𝑤0
= −0.2 

𝜎 
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Question 7 (continued) 
 

b) [6 pts] The #gradient vanishing” problem is a serious issue when training deep neural networks 
by backpropagation.   

 
i) [3 pts] Describe the gradient vanishing problem 

 
Gradient vanishing corresponds to the situation where the gradient gets smaller 
and smaller as we go down the neural network, to the point where the bottom 
layers are barely updated because the gradient of their weights is near 0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ii) [3 pts] Describe an approach to mitigate the gradient vanishing problem. 
 
Several approaches are possible.  One approach is sufficient for full marks.  The 
following approaches are acceptable (other approaches may also be acceptable): 

• Use rectified linear units (ReLU) 
• Use batchnorm or layernorm 
• Pre-train the lower layers 
• Use skip connections (also known as residual connections) 
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Question 8 [12 pts] Overfitting is a common problem in machine learning. 
 

a) [4 pts] Draw a graph illustrating the overfitting phenomenon.  More precisely, the x-axis of 
your graph should correspond to hypothesis complexity and the y-axis should correspond to 
hypothesis accuracy.  Draw two curves in your graph showing how the accuracy of hypotheses 
vary with their complexity for the training set and the test set when overfitting occurs. 

 

 
 

b) [2 pts] Explain one possible cause of overfitting. 
 
There are several possible causes.  Only one cause is sufficient for full marks, but the 
following two causes are acceptable (other causes may also be acceptable): 

• Noise in the data (as a result the training set is not representative of the test set) 
• Insufficient data (this could be insufficient training data, test data or both). 

 
c) [3 pts] Name a technique to prevent overfitting in decision tree learning. 

 
Several techniques are possible. Only one technique is sufficient for full marks.  The 
following two techniques are acceptable (other techniques may also be acceptable): 

• Prune statistically insignificant nodes using a statistical test such as the chi-squared 
test 

• Do not split nodes with fewer data points than some threshold that is optimized by 
cross-validation 

• Stop growing the tree early when cross-validation accuracy starts decreasing 
 

d) [3 pts] Name another technique to prevent overfitting in deep learning. 
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Several techniques are possible.  Only one technique is sufficient for full marks.  The 
following two techniques are acceptable (other techniques may also be acceptable): 

• Use dropout 
• Use regularization (i.e., add a term to the loss function that penalizes large weights) 
• Stop training early, i.e., when validation accuracy starts decreasing 


