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Outline

= Reasoning under uncertainty over time
= Hidden Markov Models

= Dynamic Bayesian Networks
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Static Inference

= So far...
= Assume the world doesn’t change
= Static probability distribution

= Ex: when repairing a car, whatever is broken remains broken
during the diagnosis

= But the world evolves over time...

= How can we use probabilistic inference for weather predictions,
stock market predictions, patient monitoring, etc?
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Dynamic Inference

= Need to reason over time
= Allow the world to evolve
= Set of states (encoding all possible worlds)
= Set of time-slices (snapshots of the world)
= Different probability distribution over states at each time slice

= Dynamics encoding how distributions change over time
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Stochastic Process

= Definition
= Set of States: S

= Stochastic dynamics: Pr(s,|s;, ..., S,)

= Can be viewed as a Bayes net with one random variable per time slice

W UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 9 - Pascal Poupart PAGE 5 @ WATE RLOO



Stochastic Process

= Problems:
= Infinitely many variables
= Infinitely large conditional probability tables
= Solutions:
= Stationary process: dynamics do not change over time

= Markov assumption: current state depends only on a finite history of
past states

W UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 9 - Pascal Poupart PAGE 6 @ WATE RLOO



K-order Markov Process
= Assumption: last k states sufficient

» First-order Markov Process

= Pr(s|St.i, --vr So) = Pr(sy|s..)

» Second-order Markov Process

= Pr(sy|siy, --er So) = Pr(sy|Si.ss Si.0)
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K-order Markov Process

= Advantage:

= Can specify entire process with finitely many time slices

= Two slices sufficient for a first-order Markov process...

= Graph: @ @

= Dynamics: Pr(s|s;.,)

= Prior: Pr(s,)
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Mobile Robot Localisation

« Example of a first-order Markov process

Start location

-

« Problem: uncertainty grows over time...
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Hidden Markov Models

« Robot could use sensors to reduce location uncertainty...

« In general:
— States not directly observable, hence uncertainty captured by a distribution
— Uncertain dynamics increase state uncertainty
— Observations made via sensors reduce state uncertainty

o Solution: Hidden Markov Model
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First-order Hidden Markov Model

« Definition:
— Set of states: S
— Set of observations: O
— Transition model: Pr(s,|s,,)
— Observation model: Pr(o|s,)
— Prior: Pr(s,)
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Mobile Robot Localisation
o (First-order) Hidden Markov Model:

— S: (x,y) coordinates of the robot on a map

— O: distances to surrounding obstacles (measured by laser range
finders or sonars)

— Pr(s|s;.,): movement of the robot with uncertainty

— Pr(o,|sy): uncertainty in the measurements provided by laser range
finders and sonars

« Localisation corresponds to the query: Pr(s;|oy, ..., 0,)?
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Inference in temporal models

e Four common tasks:
— Monitoring: Pr(s;|oy, ..., 0,)
— Prediction: Pr(si,x|oy, ..., 0,)
— Hindsight: Pr(s|oy, ..., 0,) wherek < t

,,,,,

« What algorithms should we use?

— First 3 tasks can be done with variable elimination and 4t task with a
variant of variable elimination
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Monitoring

e Pr(s,|oy, ..., 0,): distribution over current state given observations
« Examples: robot localisation, patient monitoring

e Forward algorithm: corresponds to variable elimination
— Factors: Pr(s,), Pr(s;|s;_,), Pr(o;|s;), 1<i<t
— Restrict o, ..., 0, to the observations made
— Summout s, ..., S,

_ Zso...st—1 PI‘(SO) Hlsist Pr(silsi—1) Pr(0i|si)
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Prediction

e Pr(si.|os ..., 0,): distribution over future state given observations
« Examples: weather prediction, stock market prediction

e Forward algorithm: corresponds to variable elimination
— Factors: Pr(s,), Pr(s;|s;.,), Pr(o;|s;), 1<i<t+k
— Restrict o, ..., o, to the observations made
— Summout S, ..., St1k-15 Otiqs ++vs Otk

_ Zso...st+k—1,ot+1...ot+k PI‘(SO) H1sist+k Pr(silsi—1) Pr(oilsi)
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Hindsight

e Pr(sy|oy ..., 0,) for k<t: distribution over a past state given observations
« Example: crime scene investigation

« Forward-backward algorithm: corresponds to variable elimination
— Factors: Pr(s,), Pr(s;|s;_,), Pr(o;|s;), 1<i<t
— Restrict o, ..., o, to the observations made
— Summout S, ..., Si_1, Ski1s --es St

_ Zso...sk—1,sk+1,...,st PI‘(SO) Hlsist Pr(silsi—1) Pr(oilsi)
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Most likely explanation

e Argmax,,  Pr(s,,...,s¢|0; ..., 0,): most likely state sequence given
observations

« Example: speech recognition

 Viterbi algorithm: corresponds to a variant of variable elimination
— Factors: Pr(s,), Pr(s;|s;_,), Pr(o;|s;), 1<i<t
— Restrict o, ..., 0, to the observations made
— Maxout s, ..., S;
— MaXy, g Pr(So) [li<i<t Pr(silsi) Pr(o;]s;)
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Complexity of temporal inference

« Hidden Markov Models are Bayes nets with a polytree structure

« Hence, variable elimination is

— Linear with respect to # of time slices

— Linear with respect to largest conditional probability table (Pr(s;|s;.,) or
Pr(oq|sy)

« What if # of states or observations are exponential?

W UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 9 - Pascal Poupart PAGE 18 @ WATERLOO



Dynamic Bayesian Networks

e Idea: encode states and observations with several random variables
« Advantage: exploit conditional independence to save time and space

« HMMs are just DBNs with one state variable and one observation
variable
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Mobile Robot Localisation

 States: (x,y) coordinates and heading 0
o Observations: laser and sonar
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DBN complexity

« Conditional independence allows us to write transition and
observation models very compactly!

« Time and space of inference: conditional independence rarely helps...
— Inference tends to be exponential in the number of state variables

— Intuition: all state variables eventually get correlated
— No better than with HMMs ®
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Non-Stationary Process

= What if the process is not stationary?
= Solution: add new state components until dynamics are stationary

= Example:
= Robot navigation based on (x,y,0) is non-stationary when velocity varies...
= Solution: add velocity to state description e.g. (x,y,v,0)
= If velocity varies... then add acceleration

= Where do we stop?
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Non-Markovian Process

= What if the process is not Markovian?
= Solution: add new state components until dynamics are Markovian

= Example:

= Robot navigation based on (x,y,0) is non-Markovian when influenced by
battery level...

= Solution: add battery level to state description e.g. (x,y,0,b)
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Markovian Stationary Process

= Problem: adding components to the state description to force a
process to be Markovian and stationary may significantly increase
computational complexity

= Solution: try to find the smallest state description that is self-
sufficient (i.e., Markovian and stationary)
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Probabilistic Inference

= Applications of static and temporal inference are virtually limitless

= Some examples:
= mobile robot navigation
= vacuum cleaners
= speech recognition
= patient monitoring
= help system under Windows
= fault diagnosis in Mars rovers
= etc.

W UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 9 - Pascal Poupart PAGE 25 @ WATERLOO



Robot localisation

e Demo at
1:15
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Localization and Mapping in Robotic Vacuums

Neato Robotics

Uses particle filtering
(approximate inference
technique based on
sampling) for simultaneous
localisation and mapping

See patent: http://www.fags.org/patents/assignee/neato-robotics-inc/
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Comparison

« Comparison at
4:34
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