Lecture 9: Reasoning over Time CS486/686 Intro to Artificial Intelligence

2023-6-8

Pascal Poupart
David R. Cheriton School of Computer Science

Outline

- Reasoning under uncertainty over time
- Hidden Markov Models
- Dynamic Bayesian Networks

Static Inference

- So far...
 - Assume the world doesn't change
 - Static probability distribution
 - Ex: when repairing a car, whatever is broken remains broken during the diagnosis
- But the world evolves over time...
 - How can we use probabilistic inference for weather predictions, stock market predictions, patient monitoring, etc?

Dynamic Inference

- Need to reason over time
 - Allow the world to evolve
 - Set of states (encoding all possible worlds)
 - Set of time-slices (snapshots of the world)
 - Different probability distribution over states at each time slice
 - Dynamics encoding how distributions change over time

Stochastic Process

- Definition
 - Set of States: S
 - Stochastic dynamics: $Pr(s_t|s_{t-1}, ..., s_0)$

Can be viewed as a Bayes net with one random variable per time slice

Stochastic Process

- Problems:
 - Infinitely many variables
 - Infinitely large conditional probability tables
- Solutions:
 - Stationary process: dynamics do not change over time
 - Markov assumption: current state depends only on a finite history of past states

K-order Markov Process

- Assumption: last k states sufficient
- First-order Markov Process
 - $Pr(s_t|s_{t-1},...,s_0) = Pr(s_t|s_{t-1})$

- Second-order Markov Process
 - $Pr(s_t|s_{t-1},...,s_0) = Pr(s_t|s_{t-1},s_{t-2})$

K-order Markov Process

- Advantage:
 - Can specify entire process with finitely many time slices
- Two slices sufficient for a first-order Markov process...

• Graph:
$$(s_{t-1})$$
 $\rightarrow (s_t)$

- Dynamics: $Pr(s_t|s_{t-1})$
- Prior: $Pr(s_0)$

Mobile Robot Localisation

• Example of a first-order Markov process

• Problem: uncertainty grows over time...

Hidden Markov Models

- Robot could use sensors to reduce location uncertainty...
- In general:
 - States not directly observable, hence uncertainty captured by a distribution
 - Uncertain dynamics increase state uncertainty
 - Observations made via sensors reduce state uncertainty

Solution: Hidden Markov Model

First-order Hidden Markov Model

- Definition:
 - Set of states: S
 - Set of observations: O
 - Transition model: $Pr(s_t|s_{t-1})$
 - Observation model: $Pr(o_t|s_t)$
 - Prior: $Pr(s_0)$

Mobile Robot Localisation

- (First-order) Hidden Markov Model:
 - S: (x,y) coordinates of the robot on a map
 - O: distances to surrounding obstacles (measured by laser range finders or sonars)
 - $-\Pr(s_t|s_{t-1})$: movement of the robot with uncertainty
 - $Pr(o_t|s_t)$: uncertainty in the measurements provided by laser range finders and sonars

• Localisation corresponds to the query: $Pr(s_t|o_t, ..., o_1)$?

Inference in temporal models

- Four common tasks:
 - Monitoring: $Pr(s_t|o_t, ..., o_1)$
 - Prediction: $Pr(s_{t+k}|o_t, ..., o_1)$
 - Hindsight: $Pr(s_k|o_t, ..., o_1)$ where k < t
 - Most likely explanation: $\operatorname{argmax}_{st,...,s_1} \Pr(s_t, ..., s_1 | o_t, ..., o_1)$
- What algorithms should we use?
 - First 3 tasks can be done with variable elimination and 4th task with a variant of variable elimination

Monitoring

- $Pr(s_t|o_t, ..., o_1)$: distribution over current state given observations
- Examples: robot localisation, patient monitoring
- Forward algorithm: corresponds to variable elimination
 - Factors: $Pr(s_0)$, $Pr(s_i|s_{i-1})$, $Pr(o_i|s_i)$, $1 \le i \le t$
 - Restrict o₁, ..., o_t to the observations made
 - Summout s_0 , ..., s_{t-1}
 - $\Sigma_{\text{so...st-1}} \Pr(s_0) \prod_{1 \le i \le t} \Pr(s_i | s_{i-1}) \Pr(o_i | s_i)$

Prediction

- $Pr(s_{t+k}|o_t, ..., o_1)$: distribution over future state given observations
- Examples: weather prediction, stock market prediction
- Forward algorithm: corresponds to variable elimination
 - Factors: $Pr(s_0)$, $Pr(s_i|s_{i-1})$, $Pr(o_i|s_i)$, $1 \le i \le t+k$
 - Restrict o₁, ..., o_t to the observations made
 - Summout $s_0, ..., s_{t+k-1}, o_{t+1}, ..., o_{t+k}$
 - $\Sigma_{\text{so...st+k-1,ot+1...ot+k}} \Pr(s_o) \prod_{1 \le i \le t+k} \Pr(s_i | s_{i-1}) \Pr(o_i | s_i)$

Hindsight

- $Pr(s_k|o_t, ..., o_1)$ for k<t: distribution over a past state given observations
- Example: crime scene investigation
- Forward-backward algorithm: corresponds to variable elimination
 - Factors: $Pr(s_0)$, $Pr(s_i|s_{i-1})$, $Pr(o_i|s_i)$, $1 \le i \le t$
 - Restrict o₁, ..., o_t to the observations made
 - Summout $s_0, ..., s_{k-1}, s_{k+1}, ..., s_t$
 - $\Sigma_{\text{so...sk-1,sk+1,...,st}} \Pr(s_0) \prod_{1 \le i \le t} \Pr(s_i | s_{i-1}) \Pr(o_i | s_i)$

Most likely explanation

• Argmax_{so...st} $Pr(s_0,...,s_t|o_t,...,o_1)$: most likely state sequence given observations

• Example: speech recognition

- Viterbi algorithm: corresponds to a variant of variable elimination
 - Factors: $Pr(s_0)$, $Pr(s_i|s_{i-1})$, $Pr(o_i|s_i)$, $1 \le i \le t$
 - Restrict o₁, ..., o_t to the observations made
 - Maxout $s_0, ..., s_t$
 - $-\max_{so...st} \Pr(s_0) \prod_{1 \le i \le t} \Pr(s_i | s_{i-1}) \Pr(o_i | s_i)$

Complexity of temporal inference

- Hidden Markov Models are Bayes nets with a polytree structure
- Hence, variable elimination is
 - Linear with respect to # of time slices
 - Linear with respect to largest conditional probability table ($Pr(s_t|s_{t-1})$ or $Pr(o_t|s_t)$)
- What if # of states or observations are exponential?

Dynamic Bayesian Networks

• Idea: encode states and observations with several random variables

• Advantage: exploit conditional independence to save time and space

HMMs are just DBNs with one state variable and one observation variable

Mobile Robot Localisation

- States: (x,y) coordinates and heading θ
- Observations: laser and sonar

DBN complexity

- Conditional independence allows us to write transition and observation models very compactly!
- Time and space of inference: conditional independence rarely helps...
 - Inference tends to be exponential in the number of state variables
 - Intuition: all state variables eventually get correlated
 - No better than with HMMs ☺

Non-Stationary Process

- What if the process is not stationary?
- Solution: add new state components until dynamics are stationary
- Example:
 - Robot navigation based on (x,y,θ) is non-stationary when velocity varies...
 - Solution: add velocity to state description e.g. (x,y,v,θ)
 - If velocity varies... then add acceleration
 - Where do we stop?

Non-Markovian Process

- What if the process is not Markovian?
- Solution: add new state components until dynamics are Markovian
- Example:
 - Robot navigation based on (x,y,θ) is non-Markovian when influenced by battery level...
 - Solution: add battery level to state description e.g. (x,y,θ,b)

Markovian Stationary Process

 Problem: adding components to the state description to force a process to be Markovian and stationary may significantly increase computational complexity

 Solution: try to find the smallest state description that is selfsufficient (i.e., Markovian and stationary)

Probabilistic Inference

- Applications of static and temporal inference are virtually limitless
- Some examples:
 - mobile robot navigation
 - vacuum cleaners
 - speech recognition
 - patient monitoring
 - help system under Windows
 - fault diagnosis in Mars rovers
 - etc.

Robot localisation

Demo at1:15

Localization and Mapping in Robotic Vacuums

Neato Robotics

Uses particle filtering
(approximate inference
technique based on
sampling) for simultaneous
localisation and mapping

See patent: http://www.faqs.org/patents/assignee/neato-robotics-inc/

Comparison

• Comparison at 4:34

