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Outline

= Models

= Causal Bayesian Networks

= Structural Causal Models

= Causal inference
» Interventions

= Counterfactuals
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Causality

= Causality is the study of how things influence one other, how
causes lead to effects.

= Causal dependence: X causes Y iff changes to X induce changesto Y

= Example: Diseases cause symptoms, but symptoms do not cause diseases
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Causal and Non-Causal Correlations

= A joint distribution P(X,Y) captures correlations between X and Y,
but does not indicate whether a causal relation exists between X and Y nor
the direction of the causal relation when it exists.

= A conditional distribution P(Y|X) does not necessarily indicate X
causes Y

Pr(X|Y)pP()
P(X)

= Since we can transform P(X|Y) into P(Y|X), conditional distributions do not always
indicate causal dependences, otherwise Y would cause X and X would cause Y

= Recall Bayes’ rule: P(Y|X) =
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Spurious Correlations

US spending on science, space, and technology
correlates with

Suicides by hanging, strangulation and suffocation

Correlation: 99.79% (r=0.99789126)
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From https://www.tylervigen.com/spurious-correlations
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Spurious Correlations

GD + ERM
Training domain Test domain
Cows: 90% green background Cows: 0% green background
Camels: 90% background Camels: 0% background

Standard example (Beery et al., "18 Arjovsky et al., ‘19)
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Causal Bayesian Network

Definition: Bayesian network where all edges indicate direct causal
effects.

Causal Bayes net Non-causal Bayes net

) € cHOR®

N\ / \/

Probabilistic Inference Probabilistic Inference
Causal Inference
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Causal Inference

Intervention: What is the effect of an action?

E.g., What is the effect of a treatment?

Causal networks can easily support intervention queries,
but not non-causal networks do not.
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Observation versus Intervention

Observation: What is the likelihood
that the grass is wet when the sprinkler
1s observed to be on?

P(WG|S = true)?

Intervention: How does turning on
the sprinkler affect the grass?

P(WG|do(S = true))?
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Do Operator

Observational query:
P(WG|S = true)?

« Factors: P(C) p (Kf C)

« Evidence: S =Tne

« Eliminate: C R
Intervention query:

P(WG|do(S = true))?
= Factors: P(C\ P(NC\ P(W G-(S/ IQ)

« Evidence: <<=Glux
= Eliminate: C(K
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Inference with Do Operator

P(X|do(Y =y),Z = z)

In a causal graph:

1) Remove edges pointing to Y and P (Y |parents(Y))

2) Perform variable elimination on remaining graph:
a) Restrict factors to evidence: Y = yand Z = z

b) Eliminate variables

¢) Multiply remaining factors and normalize
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Non-Causal Graph pPeels)
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Counterfactual Analysis

Intervention: What is the effect of an action?

E.g., What is the effect of a treatment?

Counterfactual analysis (or counterfactual thinking): explores outcomes
that did not actually occur, but which could have occurred under different
conditions. It’s a kind of what if? analysis and is a useful way for testing
cause-and-effect relationships.

E.g., Would the patient have died if he was not treated?
E.g., Would a goal be scored had the player not tripped?
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Counterfactual Analysis

How can we answer counterfactual questions with a causal Bayes net?

Treatment - Dead
Fact: patient was treated and then died

Counterfactual question: Had the patient not been treated, would the
patient have survived?

Can’t answer this question since we can’t revive the patient to try no
treatment...
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Structural Causal Models

U\ \)‘L
Idea: separate causal relations from noise ! &/
Structural Causal Model contains: / & U\,

= X: endogenous variables (domain variables) U3\’ \(2 ~ X ‘//
= U: exogenous variables (noise) X; = g , (U,] (
= Only deterministic relations given by equations Xy = 6 1( v Y ,Uz_)

* X; = f(parents(X;),U;) Ky= 63(7?2 (UZ)
X\{:g (K';er U )
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Conversion

= Structural Causal Models (SCMs) can be converted into equivalent
Causal Bayesian Network, but not the other way around

@\3\(1 Ul ‘\1)/2 U (x,) f P(Ul)@

( \' XI SYL g
\VZ 4 Vysx ——-?\7% X
RN 3 1 k) = Z F(Ul) OR Uz
f3 s> Nosct SCH Uy
= SCMs separate causal relations from the noise and therefore provuiQ’

more information
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Example

Let P(X,Y) be uniformly distributed i.e., P(X = x,Y = y) = 0.25 Vx,y

X: treatment

Y: dead
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Example

Meodel B u, =0 u, =1 Marginal
x=1 x=0 x=1 x=0 x=1 x=0

y = 1 (death) 0 0 0.25 0.25 0.25 0.25

y = 0 (recovery)  0.25 0.25 0 0 0.25 0.25

Model C u =0 u; =1 Marginal
x=1 x=0 x=1 x=0 x=1 x=0

y = 1 (death) 0 0.25 0.25 0 0.25 0.25

y = 0 (recovery)  0.25 0 0 0.25 0.25 0.25
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Counterfactual Analysis

These three steps can be generalized to any causal model M as follows. Given evi-
dence e, to compute the probability of ¥ = y under the hypothetical condition X = x
(where X is a subset of variables), apply the following three steps to M.

Step 1 (abduction): Update the probability P(x) to obtain P(u | e).

Step 2 (action): Replace the equations corresponding to variables in set X by the equa-
tions X = x.

Step 3 (prediction): Use the modified model to compute the probability of Y = .
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DoWhy Library (Microsoft)

= https://github.com/py-why/dowhy

Case Studies using DoWhy: Hotel booking cancellations | Effect of customer loyalty programs | Optimizing article
headlines | Effect of home visits on infant health (IHDP) | Causes of customer churn/attrition

Domain Knowledge
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