Lecture 6: Bayesian Networks CS486/686 Intro to Artificial Intelligence

2023-5-30

Pascal Poupart
David R. Cheriton School of Computer Science

Bayesian Networks (BN)

- Graphical representation of the direct dependencies over a set of variables + a set of conditional probability tables (CPTs) quantifying the strength of those influences.

- A BN over variables $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$
- a DAG whose nodes are the variables
- a set of CPTs $\left(\operatorname{Pr}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)\right.$ for each X_{i}

Bayesian Networks

- Also known as
- Belief networks
- Probabilistic networks
- Key notions
- parents of a node: $\operatorname{Par}\left(X_{i}\right)$
- children of node
- descendants of a node
- ancestors of a node
- family: set of nodes consisting of X_{i} and its parents
- CPTs are defined over families in the BN

Parents $(C)=\{A, B\}$
Children $(A)=\{C\}$
Descendents $(B)=\{C, D\}$
Ancestors $\{D\}=\{A, B, C\}$
Family $\{C\}=\{C, A, B\}$

An Example Bayes Net

- A few CPTs are "shown"
- Explicit joint requires $2^{11}-1$ = 2047 parameters
- BN requires only 27 params (the number of entries for each CPT is listed)

Semantics of a Bayes Net

- The structure of the BN means: every X_{i} is conditionally independent of all of its non-descendants given its parents:

$$
\operatorname{Pr}\left(X_{i} \mid S \cup \operatorname{Par}\left(X_{i}\right)\right)=\operatorname{Pr}\left(X_{i} \mid \operatorname{Par}\left(X_{i}\right)\right)
$$

for any subset $S \subseteq$ NonDescendants $\left(X_{i}\right)$

Semantics of Bayes Nets

- If we ask for $\operatorname{Pr}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- assuming an ordering consistent with the network
- By the chain rule, we have:

$$
\begin{aligned}
\operatorname{Pr}\left(x_{1}, x_{2}\right. & \left., \ldots, x_{n}\right) \\
& =\operatorname{Pr}\left(x_{n} \mid x_{n-1}, \ldots, x_{1}\right) \operatorname{Pr}\left(x_{n-1} \mid x_{n-2}, \ldots, x_{1}\right) \ldots \operatorname{Pr}\left(x_{1}\right) \\
& =\operatorname{Pr}\left(x_{n} \mid \operatorname{Par}\left(x_{n}\right)\right) \operatorname{Pr}\left(x_{n-1} \mid \operatorname{Par}\left(x_{n-1}\right)\right) \ldots \operatorname{Pr}\left(x_{1}\right)
\end{aligned}
$$

- Thus, the joint is recoverable using the parameters (CPTs) specified in an arbitrary BN

Constructing a Bayes Net

- Given any distribution over variables $X_{1}, X_{2}, \ldots, X_{n}$, we can construct a Bayes net that faithfully represents that distribution.

Take any ordering of the variables (say, the order given), and go through the following procedure for X_{n} down to X_{1}.

- Let $\operatorname{Par}\left(X_{n}\right)$ be any subset $S \subseteq\left\{X_{1}, \ldots, X_{n-1}\right\}$ such that X_{n} is independent of $\left\{X_{1}, \ldots, X_{n-1}\right\}-S$ given S. Such a subset must exist (convince yourself).
- Then determine the parents of X_{n-1} in the same way, finding a similar $S \subseteq$ $\left\{X_{1}, \ldots, X_{n-2}\right\}$, and so on.
In the end, a DAG is produced and the BN semantics must hold by construction.

Causal Intuitions

- The construction of a BN is simple
- works with arbitrary orderings of variable set
- but some orderings are much better than others!
- generally, if ordering/dependence structure reflects causal intuitions, a more natural, compact BN results

- In this BN, we used the ordering Mal, Cold, Flu, Aches to build BN for joint distribution P
- Variable can only have parents that come earlier in the ordering

Causal Intuitions

- Suppose we build the BN for distribution P using the opposite ordering
- i.e., we use ordering Aches, Cold, Flu, Malaria
- resulting network is more complicated!

- Mal depends on Aches; but it also depends on Cold, Flu given Aches
- Cold, Flu explain away Mal given Aches
- Flu depends on Aches; but also on Cold given Aches
- Cold depends on Aches

Compactness

$1+1+1+8=11$ numbers

In general, if each random variable is directly influenced by at most k others, then each CPT will be at most 2^{k}. Thus, the entire network of n variables is specified by $n 2^{k}$.

Testing Independence

- Given BN, how do we determine if two variables X, Y are independent (given evidence E)?
- we use a (simple) graphical property
- D-separation: A set of variables $\boldsymbol{E} d$-separates X and Y if it blocks every undirected path in the BN between X and Y.
- X and Y are conditionally independent given evidence \boldsymbol{E} if \boldsymbol{E} d-separates X and Y
- Thus, BN gives us an easy way to tell if two variables are independent (set $E=\varnothing$) or cond. independent

Blocking: Graphical View

(1)

If Z in evidence, the path between X and Y blocked
(2)

If Z in evidence, the path between X and Y blocked
(3)

If Z is not in evidence andno descendent Z is in evidence, then the path between X and Y is blocked

Blocking in D-Separation

- Let P be an undirected path from X to Y in a BN. Let \boldsymbol{E} be an evidence set. We say \boldsymbol{E} blocks path P iff there is some node Z on the path such that:
- Case 1: one arc on P goes into Z and one goes out of Z, and $Z \in \boldsymbol{E}$; or
- Case 2: both arcs on P leave Z, and $Z \in \boldsymbol{E}$; or
- Case 3: both arcs on P enter Z and neither Z, nor any of its descendants, are in \boldsymbol{E}.

D-Separation: Intuitions

1. Subway and

Thermometer?
2. Aches and Fever?
3. Aches and Thermometer?
4. Flu and Malaria?
5. Subway and ExoticTrip?

D-Separation: Intuitions

- Subway and Thermometer are dependent; but are independent given Flu (since Flu blocks the only path)
- Aches and Fever are dependent; but are independent given Flu (since Flu blocks the only path). Similarly for Aches and Thermometer (dependent, but independent given Flu).
- Flu and Mal are independent (given no evidence): Fever blocks the path, since it is not in evidence, nor is its descendant Thermometer. Flu, Malaria are dependent given Fever (or given Thermometer): nothing blocks path now.
- Subway, ExoticTrip are independent; they are dependent given Thermometer; they are independent given Thermometer and Malaria. This for exactly the same reasons for $\mathrm{Flu} /$ Malaria above.

Inference in Bayes Nets

- The independence sanctioned by D-separation (and other methods) allows us to compute prior and posterior probabilities quite effectively.
- We'll look at a few simple examples to illustrate. We'll focus on networks without loops. (A loop is a cycle in the underlying undirected graph. Recall the directed graph has no cycles.)

Simple Forward Inference (Chain)

- Computing marginal requires simple forward "propagation" of probabilities

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~J})=\Sigma_{\mathrm{M}, \mathrm{ET}} \mathrm{P}(\mathrm{~J}, \mathrm{M}, \mathrm{ET}) \\
& \text { (marginalization) } \\
& \mathrm{P}(\mathrm{~J})=\Sigma_{\mathrm{M}, \mathrm{ET}} \mathrm{P}(\mathrm{~J} \mid \mathrm{M}, \mathrm{ET}) \mathrm{P}(\mathrm{M} \mid \mathrm{ET}) \mathrm{P}(\mathrm{ET}) \\
& \text { (chain rule) } \\
& P(J)=\Sigma_{M, E T} P(J \mid M) P(M \mid E T) P(E T) \\
& \text { (conditional independence) } \\
& \mathrm{P}(\mathrm{~J})=\Sigma_{\mathrm{M}} \mathrm{P}(\mathrm{~J} \mid \mathrm{M}) \Sigma_{\mathrm{ET}} \mathrm{P}(\mathrm{M} \mid \mathrm{ET}) \mathrm{P}(\mathrm{ET}) \\
& \text { (distribution of sum) }
\end{aligned}
$$

Note: all (final) terms are CPTs in the BN Note: only ancestors of J considered

Simple Forward Inference (Chain)

- Same idea applies when we have "upstream" evidence

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~J} \mid \mathrm{ET})=\Sigma_{\mathrm{M}} \mathrm{P}(\mathrm{~J}, \mathrm{M} \mid \mathrm{ET}) \\
& \quad(\text { marginalisation }) \\
& \mathrm{P}(\mathrm{~J} \mid \mathrm{ET})=\Sigma_{\mathrm{M}} \mathrm{P}(\mathrm{~J} \mid \mathrm{M}, \mathrm{ET}) \mathrm{P}(\mathrm{M} \mid \mathrm{ET}) \\
& \quad \text { (chain rule) } \\
& \\
& \mathrm{P}(\mathrm{~J} \mid \mathrm{ET})=\Sigma_{\mathrm{M}} \mathrm{P}(\mathrm{~J} \mid \mathrm{M}) \mathrm{P}(\mathrm{M} \mid \mathrm{ET}) \\
& \quad(\text { conditional independence })
\end{aligned}
$$

Simple Backward Inference

- When evidence is downstream of query variable, we must reason "backwards." This requires the use of Bayes rule:

$$
\begin{aligned}
\mathrm{P}(\mathrm{ET} \mid \mathrm{j}) & =\alpha \mathrm{P}(\mathrm{j} \mid \mathrm{ET}) \mathrm{P}(\mathrm{ET}) \\
& =\alpha \Sigma_{\mathrm{M}} \mathrm{P}(\mathrm{j}, \mathrm{M} \mid E T) \mathrm{P}(\mathrm{ET}) \\
& =\alpha \Sigma_{\mathrm{M}} \mathrm{P}(\mathrm{j} \mid \mathrm{M}, \mathrm{ET}) \mathrm{P}(\mathrm{M} \mid \mathrm{ET}) \mathrm{P}(\mathrm{ET}) \\
& =\alpha \Sigma_{\mathrm{M}} \mathrm{P}(\mathrm{j} \mid \mathrm{M}) \mathrm{P}(\mathrm{M} \mid \mathrm{ET}) \mathrm{P}(\mathrm{ET})
\end{aligned}
$$

- First step is just Bayes rule

- normalizing constant α is $1 / \mathrm{P}(\mathrm{j})$; but we needn't compute it explicitly if we compute $P(E T \mid j)$ for each value of ET: we just add up terms P(j|ET)P(ET) for all values of ET (they sum to $\mathrm{P}(\mathrm{j})$)

Variable Elimination

- The intuitions in the above examples give us a simple inference algorithm for networks without loops: the polytree algorithm.
- Instead, we'll look at a more general algorithm that works for general BNs; but the polytree algorithm will be a special case.
- The algorithm, variable elimination, simply applies the summing out rule repeatedly.
- To keep computation simple, it exploits the independence in the network and the ability to distribute sums inward

Factors

- A function $f\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ is also called a factor. We can view this as a table of numbers, one for each instantiation of the variables $X_{1}, X_{2}, \ldots, X_{k}$.
- A tabular representation of a factor is exponential in k
- Each CPT in a Bayes net is a factor:
- e.g., $\operatorname{Pr}(\mathrm{C} \mid \mathrm{A}, \mathrm{B})$ is a function of three variables, $\mathrm{A}, \mathrm{B}, \mathrm{C}$
- Notation: $f(\mathbf{X}, \mathbf{Y})$ denotes a factor over the variables $\mathbf{X} \cup \mathbf{Y}$. (Here \mathbf{X}, \mathbf{Y} are sets of variables.)

The Product of Two Factors

- Let $f(\mathbf{X}, \mathbf{Y}) \& g(\mathbf{Y}, \mathbf{Z})$ be two factors with variables \mathbf{Y} in common
- The product of f and g , denoted $\mathrm{h}=\mathrm{fxg}$ (or sometimes just $\mathrm{h}=\mathrm{fg}$), is defined:

$$
\mathrm{h}(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\mathrm{f}(\mathbf{X}, \mathbf{Y}) \times \mathrm{g}(\mathbf{Y}, \mathbf{Z})
$$

$f(A, B)$		$g(B, C)$		$h(A, B, C)$			
$a b$	0.9	$b c$	0.7	$a b c$	0.63	$a b \sim c$	0.27
$a \sim b$	0.1	$b \sim c$	0.3	$a \sim b c$	0.02	$a \sim b \sim c$	0.08
$\sim a b$	0.4	$\sim b c$	0.2	$\sim a b c$	0.28	$\sim a b \sim c$	0.12
$\sim a \sim b$	0.6	$\sim b \sim c$	0.8	$\sim a \sim b c$	0.12	$\sim a \sim b \sim c$	0.48

Summing a Variable Out of a Factor

- Let $\mathrm{f}(\mathrm{X}, \mathbf{Y})$ be a factor with variable X (\mathbf{Y} is a set)
- We sum out variable X from f to produce a new factor $h=\sum_{X} f$, which is defined:

$$
h(\mathbf{Y})=\sum_{X \in \operatorname{Dom}}(X) f(x, Y)
$$

$f(A, B)$		$h(B)$	
$a b$	0.9	b	1.3
$a \sim b$	0.1	$\sim b$	0.7
$\sim a b$	0.4		
$\sim a \sim b$	0.6		

Restricting a Factor

- Let $\mathrm{f}(\mathrm{X}, \mathrm{Y})$ be a factor with variable X (\mathbf{Y} is a set)
- We restrict factor f to $\mathrm{X}=\mathrm{x}$ by setting X to the value x and "deleting". Define $\mathrm{h}=\mathrm{f} \mathrm{X}=\mathrm{x}$ as: $\mathrm{h}(\mathbf{Y})=\mathrm{f}(\mathrm{x}, \mathbf{Y})$

$f(A, B)$		$h(B)=f_{A=a}$	
$a b$	0.9	b	0.9
$a \sim b$	0.1	$\sim b$	0.1
$\sim a b$	0.4		
$\sim a \sim b$	0.6		

Variable Elimination: No Evidence

- Computing prior probability of query var X can be seen as applying these operations on factors

- $\mathrm{P}(\mathrm{C})=\Sigma_{\mathrm{A}, \mathrm{B}} \mathrm{P}(\mathrm{C} \mid \mathrm{B}) \mathrm{P}(\mathrm{B} \mid \mathrm{A}) \mathrm{P}(\mathrm{A})$

$$
\begin{aligned}
& =\Sigma_{B} P(C \mid B) \Sigma_{A} P(B \mid A) P(A) \\
& =\Sigma_{B} f_{3}(B, C) \Sigma_{A} f_{2}(A, B) f_{1}(A) \\
& =\Sigma_{B} f_{3}(B, C) f_{4}(B)=f_{5}(C)
\end{aligned}
$$

Define new factors: $f_{4}(B)=\Sigma_{A} f_{2}(A, B) f_{1}(A)$ and $f_{5}(C)=\Sigma_{B} f_{3}(B, C) f_{4}(B)$

Variable Elimination: № Evidence

- Here's the example with some numbers

$f_{1}(A)$		$f_{2}(A, B)$		$f_{3}(B, C)$		$f_{4}(B)$		$f_{5}(C)$	
a	0.9	$a b$	0.9	$b c$	0.7	b	0.85	c	0.625
$\sim a$	0.1	$a \sim b$	0.1	$b \sim c$	0.3	$\sim b$	0.15	$\sim c$	0.375
		$\sim a b$	0.4	$\sim b c$	0.2				
		$\sim a \sim b$	0.6	$\sim b \sim c$	0.8				

VE: No Evidence (Example 2)

$$
\begin{aligned}
\mathrm{P}(\mathrm{D}) & =\Sigma_{\mathrm{A}, \mathrm{~B}, \mathrm{C}} \mathrm{P}(\mathrm{D} \mid \mathrm{C}) \mathrm{P}(\mathrm{C} \mid \mathrm{B}, \mathrm{~A}) \mathrm{P}(\mathrm{~B}) \mathrm{P}(\mathrm{~A}) \\
& =\Sigma_{\mathrm{C}} \mathrm{P}(\mathrm{D} \mid \mathrm{C}) \Sigma_{\mathrm{B}} \mathrm{P}(\mathrm{~B}) \Sigma_{\mathrm{A}} \mathrm{P}(\mathrm{C} \mid \mathrm{B}, \mathrm{~A}) \mathrm{P}(\mathrm{~A}) \\
& =\Sigma_{\mathrm{C}} \mathrm{f}_{4}(\mathrm{C}, \mathrm{D}) \Sigma_{\mathrm{B}} \mathrm{f}_{2}(\mathrm{~B}) \Sigma_{\mathrm{A}} \mathrm{f}_{3}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}) \mathrm{f}_{1}(\mathrm{~A}) \\
& =\Sigma_{\mathrm{C}} \mathrm{f}_{4}(\mathrm{C}, \mathrm{D}) \Sigma_{\mathrm{B}} \mathrm{f}_{2}(\mathrm{~B}) \mathrm{f}_{5}(\mathrm{~B}, \mathrm{C}) \\
& =\Sigma_{\mathrm{C}} \mathrm{f}_{4}(\mathrm{C}, \mathrm{D}) \mathrm{f}_{6}(\mathrm{C}) \\
& =\mathrm{f}_{7}(\mathrm{D})
\end{aligned}
$$

Define new factors: $f_{5}(B, C), f_{6}(C), f_{7}(D)$, in the obvious way

Variable Elimination: One View

- One way to think of variable elimination:
- write out desired computation using the chain rule, exploiting the independence relations in the network
- arrange the terms in a convenient fashion
- distribute each sum (over each variable) in as far as it will go
- i.e., the sum over variable X can be "pushed in" as far as the "first" factor mentioning X
- apply operations "inside out", repeatedly eliminating and creating new factors (note that each step/removal of a sum eliminates one variable)

Variable Elimination Algorithm

- Given query var Q , remaining vars \mathbf{Z}. Let F be the set of factors corresponding to CPTs for $\{\mathrm{Q}\} \cup \mathbf{Z}$.

1. Choose an elimination ordering Z_{1}, \ldots, Z_{n} of variables in \mathbf{Z}.
2. For each Z_{j}-- in the order given -- eliminate $Z_{j} \in \mathbf{Z}$ as follows:
(a) Compute new factor $g_{j}=\Sigma_{Z j} f_{1} \times f_{2} \times \ldots \times f_{k}$, where the f_{i} are the factors in F that include Z_{j}
(b) Remove the factors f_{i} (that mention Z_{j}) from F and add new factor g_{j} to F
3. The remaining factors refer only to the query variable Q. Take their product and normalize to produce $P(Q)$

VE: Example 2 again

Factors: $f_{1}(A) f_{2}(B)$
$\quad f_{3}(A, B, C) f_{4}(C, D)$
Query: $P(D)$?
Elim. Order: A, B, C

Step 1: $\operatorname{Add}_{5}(\mathrm{~B}, \mathrm{C})=\Sigma_{\mathrm{A}} \mathrm{f}_{3}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}) \mathrm{f}_{1}(\mathrm{~A})$
Remove: $\mathrm{f}_{1}(\mathrm{~A}), \mathrm{f}_{3}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})$
Step 2: $\operatorname{Add} \mathrm{f}_{6}(\mathrm{C})=\Sigma_{\mathrm{B}} \mathrm{f}_{2}(\mathrm{~B}) \mathrm{f}_{5}(\mathrm{~B}, \mathrm{C})$
Remove: $\mathrm{f}_{2}(\mathrm{~B}), \mathrm{f}_{5}(\mathrm{~B}, \mathrm{C})$
Step 3: $\operatorname{Add} \mathrm{f}_{7}(\mathrm{D})=\Sigma_{\mathrm{C}} \mathrm{f}_{4}(\mathrm{C}, \mathrm{D}) \mathrm{f}_{6}(\mathrm{C})$
Remove: $\mathrm{f}_{4}(\mathrm{C}, \mathrm{D}), \mathrm{f}_{6}(\mathrm{C})$
Last factor $\mathrm{f}_{7}(\mathrm{D})$ is (possibly unnormalized) probability $\mathrm{P}(\mathrm{D})$

Variable Elimination: Evidence

- Computing posterior of query variable given evidence is similar; suppose we observe $\mathrm{C}=\mathrm{c}$:

$$
\begin{aligned}
\mathrm{P}(\mathrm{~A} \mid \mathrm{c}) & =\alpha \mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{c} \mid \mathrm{A}) \\
= & \alpha \mathrm{P}(\mathrm{~A}) \Sigma_{\mathrm{B}} \mathrm{P}(\mathrm{c} \mid \mathrm{B}) \mathrm{P}(\mathrm{~B} \mid \mathrm{A}) \\
= & \alpha \mathrm{f}_{1}(\mathrm{~A}) \Sigma_{\mathrm{B}} \mathrm{f}_{3}(\mathrm{~B}, \mathrm{c}) \mathrm{f}_{2}(\mathrm{~A}, \mathrm{~B}) \\
= & \alpha \mathrm{f}_{1}(\mathrm{~A}) \Sigma_{\mathrm{B}} \mathrm{f}_{4}(\mathrm{~B}) \mathrm{f}_{2}(\mathrm{~A}, \mathrm{~B}) \\
= & \alpha \mathrm{f}_{1}(\mathrm{~A}) \mathrm{f}_{5}(\mathrm{~A}) \\
= & \alpha \mathrm{f}_{6}(\mathrm{~A})
\end{aligned}
$$

New factors: $f_{4}(B)=f_{3}(B, c) ; f_{5}(A)=\sum_{B} f_{2}(A, B) f_{4}(B) ; f_{6}(A)=f_{1}(A) f_{5}(A)$

Variable Elimination with Evidence

Given query var Q , evidence vars \mathbf{E} (observed to be \mathbf{e}), remaining vars \mathbf{Z}. Let F be the set of factors involving CPTs for $\{Q\} \cup \mathbf{Z}$.

1. Replace each factor $f \in F$ that mentions a variable(s) in E with its restriction $\mathrm{f}_{\mathrm{E}=e}$ (somewhat abusing notation)
2. Choose an elimination ordering Z_{1}, \ldots, Z_{n} of variables in \mathbf{Z}.
3. For each Z_{j}-- in the order given -- eliminate $Z_{j} \in \mathbf{Z}$ as follows:
(a) Compute new factor $g_{j}=\Sigma_{Z j} f_{1} \times f_{2} \times \ldots \times f_{k}$,

$$
\text { where the } f_{i} \text { are the factors in } F \text { that include } Z_{j}
$$

(b) Remove the factors f_{i} (that mention Z_{j}) from F and add new factor g_{j} to F
4. The remaining factors refer only to the query variable Q.

Take their product and normalize to produce $P(Q)$

VE: Example 2 again with Evidence

Restriction: replace $\mathrm{f}_{4}(\mathrm{C}, \mathrm{D})$ with $\mathrm{f}_{5}(\mathrm{C})=\mathrm{f}_{4}(\mathrm{C}, \mathrm{d})$ Step 1: $\operatorname{Add} \mathrm{f}_{6}(\mathrm{~A}, \mathrm{~B})=\Sigma_{\mathrm{C}} \mathrm{f}_{5}(\mathrm{C}) \mathrm{f}_{3}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})$

Remove: $\mathrm{f}_{3}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}), \mathrm{f}_{5}(\mathrm{C})$
Step 2: $\operatorname{Add} f_{7}(A)=\Sigma_{B} f_{6}(A, B) f_{2}(B)$
Remove: $\mathrm{f}_{6}(\mathrm{~A}, \mathrm{~B}), \mathrm{f}_{2}(\mathrm{~B})$

Factors: $\mathrm{f}_{1}(\mathrm{~A}) \mathrm{f}_{2}(\mathrm{~B})$ $\mathrm{f}_{3}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}) \mathrm{f}_{4}(\mathrm{C}, \mathrm{D})$
Query: $\mathrm{P}(\mathrm{A})$?
Evidence: $\mathrm{D}=\mathrm{d}$
Elim. Order: C, B

Last factors: $f_{7}(A), f_{1}(A)$. The product $f_{1}(A) \times f_{7}(A)$ is (possibly unnormalized) posterior. So... $P(A \mid d)=\alpha f_{1}(A) x f_{7}(A)$.

Some Notes on the VE Algorithm

- After iteration j (elimination of Z_{j}), factors remaining in set F refer only to variables $X_{j+1,}, \ldots Z_{n}$ and Q . No factor mentions an evidence variable E after the initial restriction.
- Number of iterations: linear in number of variables
- Complexity is exponential in the number of variables.
- Recall each factor has exponential size in its number of variables
- Can't do any better than size of BN (since its original factors are part of the factor set)
- When we create new factors, we might make a set of variables larger.

Some Notes on the VE Algorithm

- The size of the resulting factors is determined by elimination ordering! (We'll see this in detail)
- For polytrees, easy to find good ordering (e.g., work outside in).
- For general BNs, sometimes good orderings exist, sometimes they don't (then inference is exponential in number of vars).
- Simply finding the optimal elimination ordering for general BNs is NP-hard.
- Inference in general is NP-hard in general BNs

Elimination Ordering: Polytrees

- Inference is linear in size of network
- ordering: eliminate only "singly-connected" nodes
- e.g., in this network, eliminate D, A, C, X1,...; or eliminate $\mathrm{X} 1, \ldots \mathrm{Xk}, \mathrm{D}, \mathrm{A}, \mathrm{C}$; or mix up...
- result: no factor ever larger than original CPTs

- eliminating B before these gives factors that include all of A,C, X1,... Xk !!!

Effect of Different Orderings

- Suppose query variable is D. Consider different orderings for this network
- A,F,H,G,B,C,E:
- good: why?
- E,C,A,B,G,H,F:
- bad: why?
- Which ordering creates smallest factors?
- either max size or total

- which creates largest factors?

Relevance

- Certain variables have no impact on the query.
- In ABC network, computing $\operatorname{Pr}(\mathrm{A})$ with no evidence requires elimination of B and C.
- But when you sum out these vars, you compute a trivial factor (whose value are all ones); for example:
- eliminating $\mathrm{C}: \mathrm{f}_{4}(\mathrm{~B})=\Sigma_{\mathrm{C}} \mathrm{f}_{3}(\mathrm{~B}, \mathrm{C})=\Sigma_{\mathrm{C}} \operatorname{Pr}(\mathrm{C} \mid \mathrm{B})$
- 1 for any value of B (e.g., $\operatorname{Pr}(c \mid b)+\operatorname{Pr}(\sim c \mid b)=1)$
- No need to think about B or C for this query

Relevance: A Sound Approximation

- Can restrict attention to relevant variables. Given query Q, evidence \mathbf{E} :
- Q is relevant
- if any node Z is relevant, its parents are relevant
- if $\mathrm{E} \in \mathbf{E}$ is a descendent of a relevant node, then E is relevant
- We can restrict our attention to the subnetwork comprising only relevant variables when evaluating a query Q

Relevance: Examples

- Query: $P(F)$
- Relevant: F, C, B, A
- Query: $P(F \mid E)$
- Relevant: F, C, B, A
- Also: E, hence D, G
- Intuitively, we need to compute $P(C \mid E)=\alpha P(C) P(E \mid C)$ to accurately compute $P(F \mid E)$

- Query: $P(F \mid E, C)$
- Algorithm says all variables relevant; but really none except C, F since C cuts off all influence of others)
- Algorithm is overestimating relevant set

