
Lecture 6: Bayesian Networks
CS486/686 Intro to Artificial Intelligence

Pascal Poupart
David R. Cheriton School of Computer Science

2023-5-30

§ Graphical representation of the
direct dependencies over a set of
variables + a set of conditional
probability tables (CPTs)
quantifying the strength of those
influences.

§ A BN over variables 𝑋1, 𝑋2, … , 𝑋𝑛 	
consists of:
§ a DAG whose nodes are the variables
§ a set of CPTs (Pr(𝑋𝑖	|	𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) for each 𝑋𝑖

Bayesian Networks (BN)

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 2

§ Also known as
§ Belief networks
§ Probabilistic networks

§ Key notions
§ parents of a node: 𝑃𝑎𝑟(𝑋𝑖)
§ children of node
§ descendants of a node
§ ancestors of a node
§ family: set of nodes consisting of 𝑋𝑖 and its parents

§ CPTs are defined over families in the BN

A

C

B

𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝐶) = {𝐴, 𝐵}
𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝐴) = {𝐶}
𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑒𝑛𝑡𝑠(𝐵) = {𝐶, 𝐷}
𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠{𝐷} = {𝐴, 𝐵, 𝐶}
𝐹𝑎𝑚𝑖𝑙𝑦{𝐶} = {𝐶, 𝐴, 𝐵}

D

Bayesian Networks

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 3

§ A few CPTs are “shown”

§ Explicit joint requires 2// 	− 1
= 2047	parameters

§ BN requires only 27 params
(the number of entries for
each CPT is listed)

An Example Bayes Net

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 4

Semantics of a Bayes Net

§ The structure of the BN means: every 𝑋𝑖 is
conditionally independent of all of its
non-descendants given its parents:

 Pr(𝑋𝑖	|	𝑆	 ∪ 	𝑃𝑎𝑟(𝑋𝑖)) 	= 	Pr(𝑋𝑖	|	𝑃𝑎𝑟(𝑋𝑖))

for any subset 𝑆 ⊆ 𝑁𝑜𝑛𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠(𝑋𝑖)

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 5

§ If we ask for Pr(𝑥1, 𝑥2, … , 𝑥𝑛)
§ assuming an ordering consistent with the network

§ By the chain rule, we have:
 Pr 𝑥1, 𝑥2, … , 𝑥𝑛

= Pr(𝑥0|𝑥01/, … , 𝑥/)	Pr(𝑥01/|𝑥012, … , 𝑥/)…Pr(𝑥/)
= Pr(𝑥0|𝑃𝑎𝑟(𝑥0))	Pr(𝑥01/|𝑃𝑎𝑟(𝑥01/))… 	Pr(𝑥/)

§ Thus, the joint is recoverable using the parameters (CPTs)
specified in an arbitrary BN

Semantics of Bayes Nets

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 6

§ Given any distribution over variables 𝑋/, 𝑋2, … , 𝑋0, we can construct
a Bayes net that faithfully represents that distribution.

Take any ordering of the variables (say, the order given), and go through the
following procedure for 𝑋𝑛 down to 𝑋1.
• Let 𝑃𝑎𝑟(𝑋!) be any subset 𝑆 ⊆ {𝑋", … , 𝑋!#"}	such that 𝑋𝑛 is independent of
{𝑋", … , 𝑋!#"} 	− 	𝑆	given 𝑆. Such a subset must exist (convince yourself).

• Then determine the parents of 𝑋!#" in the same way, finding a similar 𝑆 ⊆
{𝑋", … , 𝑋!#$}, and so on.

In the end, a DAG is produced and the BN semantics must hold by construction.

Constructing a Bayes Net

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 7

§ The construction of a BN is simple
§ works with arbitrary orderings of variable set
§ but some orderings are much better than others!
§ generally, if ordering/dependence structure reflects causal

intuitions, a more natural, compact BN results

§ In this BN, we used the ordering
Mal, Cold, Flu, Aches to build BN
for joint distribution P
§ Variable can only have parents that

come earlier in the ordering

Causal Intuitions

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 8

§ Suppose we build the BN for distribution P using the opposite ordering
§ i.e., we use ordering Aches, Cold, Flu, Malaria
§ resulting network is more complicated!

§ Mal depends on Aches; but it also
depends on Cold, Flu given Aches
§ Cold, Flu explain away Mal given Aches

§ Flu depends on Aches; but also on
Cold given Aches

§ Cold depends on Aches

Causal Intuitions

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 9

Compactness

1+1+1+8=11 numbers 1+2+4+8=15 numbers

In general, if each random variable is directly influenced by at most k others,
then each CPT will be at most 2𝑘. Thus, the entire network of 𝑛 variables is
specified by 𝑛2𝑘.

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 10

§ Given BN, how do we determine if two variables 𝑋, 𝑌 are
independent (given evidence 𝐸)?
§ we use a (simple) graphical property

§ D-separation: A set of variables 𝑬 d-separates 𝑋 and 𝑌 if it
blocks every undirected path in the BN between 𝑋 and 𝑌.

§ 𝑋 and 𝑌 are conditionally independent given evidence 𝑬 if 𝑬
d-separates 𝑋 and 𝑌
§ Thus, BN gives us an easy way to tell if two variables are independent

(set 𝐸	 = 	∅) or cond. independent

Testing Independence

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 11

Blocking: Graphical View

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 12

§ Let 𝑃 be an undirected path from 𝑋 to 𝑌 in a BN. Let 𝑬 be an
evidence set. We say 𝑬 blocks path 𝑃 iff there is some node 𝑍 on
the path such that:

§ Case 1: one arc on 𝑃 goes into 𝑍 and one goes out of 𝑍, and 𝑍 ∈ 𝑬; or

§ Case 2: both arcs on 𝑃 leave 𝑍, and 𝑍 ∈ 𝑬; or

§ Case 3: both arcs on 𝑃 enter 𝑍 and neither 𝑍, nor any of its
descendants, are in 𝑬.

Blocking in D-Separation

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 13

1. Subway and
Thermometer?

2. Aches and Fever?

3. Aches and
Thermometer?

4. Flu and Malaria?

5. Subway and
ExoticTrip?

D-Separation: Intuitions

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 14

D-Separation: Intuitions
§ Subway and Thermometer are dependent; but are independent given Flu (since

Flu blocks the only path)

§ Aches and Fever are dependent; but are independent given Flu (since Flu blocks
the only path). Similarly for Aches and Thermometer (dependent, but
independent given Flu).

§ Flu and Mal are independent (given no evidence): Fever blocks the path, since it
is not in evidence, nor is its descendant Thermometer. Flu, Malaria are
dependent given Fever (or given Thermometer): nothing blocks path now.

§ Subway, ExoticTrip are independent; they are dependent given Thermometer;
they are independent given Thermometer and Malaria. This for exactly the same
reasons for Flu/Malaria above.

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 15

Inference in Bayes Nets
§ The independence sanctioned by D-separation (and other methods)

allows us to compute prior and posterior probabilities quite effectively.

§ We'll look at a few simple examples to illustrate. We'll focus on
networks without loops. (A loop is a cycle in the underlying undirected
graph. Recall the directed graph has no cycles.)

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 16

§ Computing marginal requires simple forward “propagation” of
probabilities

Note: all (final) terms are CPTs in the BN
Note: only ancestors of J considered

P(J)=SM,ET P(J,M,ET)
(marginalization)

P(J)=SM,ET P(J|M)P(M|ET)P(ET)
(conditional independence)

P(J)=SMP(J|M)SETP(M|ET)P(ET)
(distribution of sum)

P(J)=SM,ET P(J|M,ET)P(M|ET)P(ET)
(chain rule)

Simple Forward Inference (Chain)

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 17

§ Same idea applies when we have “upstream” evidence

(chain rule)

P(J|ET) = SMP(J,M|ET)
(marginalisation)

P(J|ET) = SMP(J|M,ET) P(M|ET)

P(J|ET) = SMP(J|M) P(M|ET)
(conditional independence)

Simple Forward Inference (Chain)

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 18

§ When evidence is downstream of query variable, we must reason
“backwards.” This requires the use of Bayes rule:

 P(ET | j) = ! P(j | ET) P(ET)

 = ! ΣM P(j,M|ET) P(ET)

 = ! ΣM P(j|M,ET) P(M|ET) P(ET)

 = ! ΣM P(j|M) P(M|ET) P(ET)

§ First step is just Bayes rule
§ normalizing constant ! is 1/P(j); but we needn’t compute it explicitly if we

compute P(ET | j) for each value of ET: we just add up terms P(j | ET) P(ET)
for all values of ET (they sum to P(j))

Simple Backward Inference

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 19

§ The intuitions in the above examples give us a simple inference algorithm for
networks without loops: the polytree algorithm.

§ Instead, we'll look at a more general algorithm that works for general BNs; but
the polytree algorithm will be a special case.

§ The algorithm, variable elimination, simply applies the summing out rule
repeatedly.
§ To keep computation simple, it exploits the independence in the network and the ability to

distribute sums inward

Variable Elimination

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 20

§ A function f(X1, X2,…, Xk) is also called a factor. We can view this as a
table of numbers, one for each instantiation of the variables X1, X2,…, Xk.
§ A tabular representation of a factor is exponential in k

§ Each CPT in a Bayes net is a factor:
§ e.g., Pr(C|A,B) is a function of three variables, A, B, C

§ Notation: f(X,Y) denotes a factor over the variables X ! Y. (Here X, Y are
sets of variables.)

Factors

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 21

§ Let f(X,Y) & g(Y,Z) be two factors with variables Y in common

§ The product of f and g, denoted h = f x g (or sometimes just h = fg), is defined:

h(X,Y,Z) = f(X,Y) x g(Y,Z)

f(A,B) g(B,C) h(A,B,C)
ab 0.9 bc 0.7 abc 0.63 ab~c 0.27

a~b 0.1 b~c 0.3 a~bc 0.02 a~b~c 0.08
~ab 0.4 ~bc 0.2 ~abc 0.28 ~ab~c 0.12

~a~b 0.6 ~b~c 0.8 ~a~bc 0.12 ~a~b~c 0.48

The Product of Two Factors

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 22

§ Let f(X,Y) be a factor with variable X (Y is a set)

§ We sum out variable X from f to produce a new factor h = ΣX f,

which is defined: h(Y) = Σx"Dom(X) f(x,Y)

f(A,B) h(B)
ab 0.9 b 1.3

a~b 0.1 ~b 0.7
~ab 0.4

~a~b 0.6

Summing a Variable Out of a Factor

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 23

§ Let f(X,Y) be a factor with variable X (Y is a set)

§ We restrict factor f to X=x by setting X to the value x and “deleting”.
Define h = fX=x as: h(Y) = f(x,Y)

f(A,B) h(B) = fA=a
ab 0.9 b 0.9

a~b 0.1 ~b 0.1
~ab 0.4

~a~b 0.6

Restricting a Factor

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 24

§ Computing prior probability of query var X can be seen as applying
these operations on factors

§ P(C) = ΣA,B P(C|B) P(B|A) P(A)

 = ΣB P(C|B) ΣA P(B|A) P(A)

 = ΣB f3(B,C) ΣA f2(A,B) f1(A)

 = ΣB f3(B,C) f4(B) = f5(C)

Define new factors: f4(B)= ΣA f2(A,B) f1(A) and f5(C)= ΣB f3(B,C) f4(B)

B CA
f1(A) f2(A,B) f3(B,C)

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 25

Variable Elimination: No Evidence

Variable Elimination: No Evidence
§ Here’s the example with some numbers

B CA
f1(A) f2(A,B) f3(B,C)

f1(A) f2(A,B) f3(B,C) f4(B) f5(C)
a 0.9 ab 0.9 bc 0.7 b 0.85 c 0.625
~a 0.1 a~b 0.1 b~c 0.3 ~b 0.15 ~c 0.375

~ab 0.4 ~bc 0.2
~a~b 0.6 ~b~c 0.8

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 26

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart 27

P(D) = ΣA,B,C P(D|C) P(C|B,A) P(B) P(A)
 = ΣC P(D|C) ΣB P(B) ΣA P(C|B,A) P(A)
 = ΣC f4(C,D) ΣB f2(B) ΣA f3(A,B,C) f1(A)
 = ΣC f4(C,D) ΣB f2(B) f5(B,C)
 = ΣC f4(C,D) f6(C)
 = f7(D)
Define new factors: f5(B,C), f6(C), f7(D), in the obvious way

C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)

VE: No Evidence (Example 2)

§ One way to think of variable elimination:
§ write out desired computation using the chain rule, exploiting the

independence relations in the network
§ arrange the terms in a convenient fashion

§ distribute each sum (over each variable) in as far as it will go
§ i.e., the sum over variable X can be “pushed in” as far as the “first” factor

mentioning X

§ apply operations “inside out”, repeatedly eliminating and creating new
factors (note that each step/removal of a sum eliminates one variable)

Variable Elimination: One View

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 28

Variable Elimination Algorithm
§ Given query var Q, remaining vars Z. Let F be the set of factors

corresponding to CPTs for {Q} !"Z.
1. Choose an elimination ordering Z1, …, Zn of variables in Z.
2. For each Zj -- in the order given -- eliminate Zj ∊ Z
 as follows:
 (a) Compute new factor gj = ΣZj f1 x f2 x … x fk,
 where the fi are the factors in F that include Zj
 (b) Remove the factors fi (that mention Zj) from F
 and add new factor gj to F
3. The remaining factors refer only to the query variable Q.
 Take their product and normalize to produce P(Q)

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 29

Step 1: Add f5(B,C) = ΣA f3(A,B,C) f1(A)
 Remove: f1(A), f3(A,B,C)
Step 2: Add f6(C)= ΣB f2(B) f5(B,C)
 Remove: f2(B) , f5(B,C)
Step 3: Add f7(D) = ΣC f4(C,D) f6(C)
 Remove: f4(C,D), f6(C)
Last factor f7(D) is (possibly unnormalized) probability P(D)

Factors: f1(A) f2(B)
f3(A,B,C) f4(C,D)

Query: P(D)?
Elim. Order: A, B, C

C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)

VE: Example 2 again

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 30

§ Computing posterior of query variable given evidence is similar;
suppose we observe C=c:

 P(A|c) = !"P(A) P(c|A)
 = !"P(A) ΣB P(c|B) P(B|A)
 = !"f1(A) ΣB f3(B,c) f2(A,B)
 = !"f1(A) ΣB f4(B) f2(A,B)
 = !"f1(A) f5(A)
 = ! f6(A)
New factors: f4(B)= f3(B,c); f5(A)= ΣB f2(A,B) f4(B); f6(A)= f1(A) f5(A)

B CA
f1(A) f2(A,B) f3(B,C)

Variable Elimination: Evidence

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 31

Given query var Q, evidence vars E (observed to be e), remaining vars Z. Let F be
the set of factors involving CPTs for {Q} !#Z.

1. Replace each factor f"$#%&'%#()*%+,*-#'#.'/+'01)2-3#+*#4
####5+%&#+%-#/)-%/+6%+,*#7!"#$2-,()5&'%#'08-+*9#*,%'%+,*3#
2. Choose an elimination ordering Z1, …, Zn of variables in Z.
3. For each Zj -- in the order given -- eliminate Zj ∊ Z as follows:
 (a) Compute new factor gj = ΣZj f1 x f2 x … x fk,
 where the fi are the factors in F that include Zj
 (b) Remove the factors fi (that mention Zj) from F and add new factor gj to F
4. The remaining factors refer only to the query variable Q.
 Take their product and normalize to produce P(Q)

Variable Elimination with Evidence

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 32

Restriction: replace f4(C,D) with f5(C) = f4(C,d)
Step 1: Add f6(A,B)= ΣC f5(C) f3(A,B,C)
 Remove: f3(A,B,C), f5(C)
Step 2: Add f7(A) = ΣB f6(A,B) f2(B)
 Remove: f6(A,B), f2(B)
Last factors: f7(A), f1(A). The product f1(A) x f7(A) is (possibly

unnormalized) posterior. So… P(A|d) = :#f1(A) x f7(A).

Factors: f1(A) f2(B)
f3(A,B,C) f4(C,D)

Query: P(A)?
Evidence: D = d
Elim. Order: C, B

C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)

VE: Example 2 again with Evidence

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 33

§ After iteration j (elimination of Zj), factors remaining in set F refer only to
variables Xj+1, … Zn and Q. No factor mentions an evidence variable E after
the initial restriction.

§ Number of iterations: linear in number of variables

§ Complexity is exponential in the number of variables.

§ Recall each factor has exponential size in its number of variables

§ Can't do any better than size of BN (since its original factors are part of
the factor set)

§ When we create new factors, we might make a set of variables larger.

Some Notes on the VE Algorithm

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 34

§ The size of the resulting factors is determined by elimination
ordering! (We’ll see this in detail)

§ For polytrees, easy to find good ordering (e.g., work outside in).

§ For general BNs, sometimes good orderings exist, sometimes they
don't (then inference is exponential in number of vars).
§ Simply finding the optimal elimination ordering for general BNs is NP-hard.

§ Inference in general is NP-hard in general BNs

Some Notes on the VE Algorithm

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 35

§ Inference is linear in size of network
§ ordering: eliminate only “singly-connected”

nodes

§ e.g., in this network, eliminate D, A, C, X1,…;
or eliminate X1,… Xk, D, A, C; or mix up…

§ result: no factor ever larger than original
CPTs

§ eliminating B before these gives factors that
include all of A,C, X1,… Xk !!!

Elimination Ordering: Polytrees

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 36

§ Suppose query variable is D.
Consider different orderings for
this network
§ A,F,H,G,B,C,E:

§ good: why?

§ E,C,A,B,G,H,F:
§ bad: why?

§ Which ordering creates smallest
factors?
§ either max size or total

§ which creates largest factors?

Effect of Different Orderings

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 37

§ Certain variables have no impact on the query.
§ In ABC network, computing Pr(A) with no evidence requires

elimination of B and C.
§ But when you sum out these vars, you compute a trivial factor (whose value are all

ones); for example:

§ eliminating C: f4(B) = ΣC f3(B,C) = ΣC Pr(C|B)

§ 1 for any value of B (e.g., Pr(c|b) + Pr(~c|b) = 1)

§ No need to think about B or C for this query

B CA

Relevance

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 38

§ Can restrict attention to relevant variables. Given query Q, evidence E:
§ Q is relevant

§ if any node Z is relevant, its parents are relevant

§ if E!E is a descendent of a relevant node, then E is relevant

§ We can restrict our attention to the subnetwork comprising only relevant
variables when evaluating a query Q

Relevance: A Sound Approximation

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 39

§ Query: 𝑃(𝐹)
§ Relevant: 𝐹, 𝐶, 𝐵, 𝐴

§ Query: 𝑃(𝐹|𝐸)
§ Relevant: 𝐹, 𝐶, 𝐵, 𝐴
§ Also: 𝐸, hence 𝐷, 𝐺
§ Intuitively, we need to compute
𝑃 𝐶 𝐸 = 𝛼𝑃 𝐶 𝑃 𝐸 𝐶 to accurately
compute 𝑃(𝐹|𝐸)

§ Query: 𝑃(𝐹|𝐸, 𝐶)
§ Algorithm says all variables relevant; but really none except 𝐶, 𝐹

since 𝐶 cuts off all influence of others)
§ Algorithm is overestimating relevant set

A

E

G

FD

C

B

Relevance: Examples

CS486/686 Spring 2023 - Lecture 6 - Pascal Poupart PAGE 40

