Lecture 6: Bayesian Networks CS486/686 Intro to Artificial Intelligence

2023-5-30

Pascal Poupart David R. Cheriton School of Computer Science

Bayesian Networks (BN)

- Graphical representation of the direct dependencies over a set of variables + a set of conditional probability tables (CPTs) quantifying the strength of those influences.
- A BN over variables {X₁, X₂, ..., X_n} consists of:
 - a DAG whose nodes are the variables
 - a set of CPTs ($Pr(X_i | Parents(X_i))$) for each X_i

Bayesian Networks

- Also known as
 - Belief networks
 - Probabilistic networks
- Key notions
 - parents of a node: $Par(X_i)$
 - children of node
 - descendants of a node
 - ancestors of a node
 - family: set of nodes consisting of *X_i* and its parents
 - CPTs are defined over families in the BN

 $Parents(C) = \{A, B\}$ $Children(A) = \{C\}$ $Descendents(B) = \{C, D\}$ $Ancestors\{D\} = \{A, B, C\}$ $Family\{C\} = \{C, A, B\}$

An Example Bayes Net

- A few CPTs are "shown"
- Explicit joint requires 2¹¹ 1
 = 2047 parameters

 BN requires only 27 params (the number of entries for each CPT is listed)

Semantics of a Bayes Net

 The structure of the BN means: every X_i is conditionally independent of all of its non-descendants given its parents:

$$Pr(X_i \mid S \cup Par(X_i)) = Pr(X_i \mid Par(X_i))$$

for any subset $S \subseteq NonDescendants(X_i)$

Semantics of Bayes Nets

- If we ask for $Pr(x_1, x_2, ..., x_n)$
 - assuming an ordering consistent with the network
- By the chain rule, we have: $Pr(x_1, x_2, ..., x_n)$ $= Pr(x_n | x_{n-1}, ..., x_1) Pr(x_{n-1} | x_{n-2}, ..., x_1) ... Pr(x_1)$ $= Pr(x_n | Par(x_n)) Pr(x_{n-1} | Par(x_{n-1})) ... Pr(x_1)$
- Thus, the joint is recoverable using the parameters (CPTs) specified in an arbitrary BN

Constructing a Bayes Net

• Given any distribution over variables $X_1, X_2, ..., X_n$, we can construct a Bayes net that faithfully represents that distribution.

Take any ordering of the variables (say, the order given), and go through the following procedure for X_n down to X_1 .

- Let $Par(X_n)$ be any subset $S \subseteq \{X_1, \dots, X_{n-1}\}$ such that X_n is independent of $\{X_1, \dots, X_{n-1}\} S$ given S. Such a subset must exist (convince yourself).
- Then determine the parents of X_{n-1} in the same way, finding a similar $S \subseteq \{X_1, \dots, X_{n-2}\}$, and so on.

In the end, a DAG is produced and the BN semantics must hold by construction.

Causal Intuitions

- The construction of a BN is simple
 - works with arbitrary orderings of variable set
 - but some orderings are much better than others!
 - generally, if ordering/dependence structure reflects causal intuitions, a more natural, compact BN results

- In this BN, we used the ordering Mal, Cold, Flu, Aches to build BN for joint distribution P
 - Variable can only have parents that come earlier in the ordering

Causal Intuitions

- Suppose we build the BN for distribution P using the opposite ordering
 - i.e., we use ordering Aches, Cold, Flu, Malaria
 - resulting network is more complicated!

- Mal depends on Aches; but it also depends on Cold, Flu *given* Aches
 - Cold, Flu explain away Mal given Aches
- Flu depends on Aches; but also on Cold *given* Aches
- Cold depends on Aches

Compactness

1+1+1+8=11 numbers

1+2+4+8=15 numbers

In general, if each random variable is directly influenced by at most k others, then each CPT will be at most 2^k . Thus, the entire network of *n* variables is specified by $n2^k$.

Testing Independence

- Given BN, how do we determine if two variables X, Y are independent (given evidence E)?
 - we use a (simple) graphical property
- **D-separation**: A set of variables *E d-separates X* and *Y* if it *blocks every undirected path* in the BN between *X* and *Y*.
- *X* and *Y* are conditionally independent given evidence *E* if *E* d-separates *X* and *Y*
 - Thus, BN gives us an easy way to tell if two variables are independent (set *E* = Ø) or cond. independent

Blocking: Graphical View

(1)
$$(\mathbf{X}_{any undir. path}) \longrightarrow (\mathbf{Z}_{any undir. path}) (\mathbf{Y}_{any undir. path})$$

If Z in evidence, the path between X and Y blocked

If Z in evidence, the path between X and Y blocked

If Z is *not* in evidence and *no* descendent of Z is in evidence, then the path between X and Y is blocked

Blocking in D-Separation

- Let *P* be an undirected path from *X* to *Y* in a BN. Let *E* be an evidence set. We say *E* blocks path *P* iff there is some node *Z* on the path such that:
 - **Case 1:** one arc on *P goes into Z* and one *goes out* of *Z*, and $Z \in E$; or
 - **Case 2:** both arcs on *P* leave *Z*, and $Z \in E$; or
 - Case 3: both arcs on *P* enter *Z* and *neither Z*, *nor any of its descendants*, are in *E*.

D-Separation: Intuitions

- 1. Subway and Thermometer?
- 2. Aches and Fever?
- 3. Aches and Thermometer?
- 4. Flu and Malaria?

5. Subway and ExoticTrip?

D-Separation: Intuitions

- Subway and Thermometer are dependent; but are independent given Flu (since Flu blocks the only path)
- Aches and Fever are dependent; but are independent given Flu (since Flu blocks the only path). Similarly for Aches and Thermometer (dependent, but independent given Flu).
- Flu and Mal are independent (given no evidence): Fever blocks the path, since it is *not in evidence*, nor is its descendant Thermometer. Flu, Malaria are dependent given Fever (or given Thermometer): nothing blocks path now.
- Subway, ExoticTrip are independent; they are dependent given Thermometer; they are independent given Thermometer and Malaria. This for exactly the same reasons for Flu/Malaria above.

Inference in Bayes Nets

- The independence sanctioned by D-separation (and other methods) allows us to compute prior and posterior probabilities quite effectively.
- We'll look at a few simple examples to illustrate. We'll focus on networks without *loops*. (A loop is a cycle in the underlying *undirected* graph. Recall the directed graph has no cycles.)

Simple Forward Inference (Chain)

 Computing marginal requires simple forward "propagation" of probabilities $P(J) = \Sigma_{M,ET} P(J,M,ET)$

(marginalization)

 $P(J) = \Sigma_{M,ET} P(J|M,ET)P(M|ET)P(ET)$ (chain rule)

 $P(J) = \sum_{M,ET} P(J|M)P(M|ET)P(ET)$ (conditional independence)

 $P(J) = \sum_{M} P(J|M) \sum_{ET} P(M|ET) P(ET)$ (distribution of sum)

Note: all (final) terms are CPTs in the BN Note: only ancestors of J considered

Simple Forward Inference (Chain)

Same idea applies when we have "upstream" evidence

 $P(J|ET) = \Sigma_M P(J,M|ET)$ (marginalisation)

 $P(J|ET) = \Sigma_M P(J|M,ET) P(M|ET)$ (chain rule)

 $P(J|ET) = \Sigma_M P(J|M) P(M|ET)$ (conditional independence)

Simple Backward Inference

• When evidence is downstream of query variable, we must reason "backwards." This requires the use of Bayes rule:

$$\begin{split} P(\text{ET} \mid j) &= \alpha \ P(j \mid \text{ET}) \ P(\text{ET}) \\ &= \alpha \ \Sigma_{\text{M}} \ P(j,\text{M} \mid \text{ET}) \ P(\text{ET}) \\ &= \alpha \ \Sigma_{\text{M}} \ P(j \mid \text{M},\text{ET}) \ P(\text{M} \mid \text{ET}) \ P(\text{ET}) \end{split}$$

 $= \alpha \Sigma_{\rm M} P(j|{\rm M}) P({\rm M}|{\rm ET}) P({\rm ET})$

- First step is just Bayes rule
 - normalizing constant α is 1/P(j); but we needn't compute it explicitly if we compute P(ET | j) for each value of ET: we just add up terms P(j | ET) P(ET) for all values of ET (they sum to P(j))

Variable Elimination

- The intuitions in the above examples give us a simple inference algorithm for networks without loops: the *polytree* algorithm.
- Instead, we'll look at a more general algorithm that works for general BNs; but the polytree algorithm will be a special case.
- The algorithm, *variable elimination*, simply applies the summing out rule repeatedly.
 - To keep computation simple, it exploits the independence in the network and the ability to distribute sums inward

Factors

- A function *f*(*X*₁, *X*₂,..., *X*_k) is also called a *factor*. We can view this as a table of numbers, one for each instantiation of the variables *X*₁, *X*₂,..., *X*_k.
 - A tabular representation of a factor is exponential in k
- Each CPT in a Bayes net is a factor:
 - e.g., Pr(C|A,B) is a function of three variables, A, B, C
- Notation: f(X,Y) denotes a factor over the variables X ∪ Y. (Here X, Y are *sets* of variables.)

The Product of Two Factors

- Let f(X,Y) & g(Y,Z) be two factors with variables Y in common
- The *product* of f and g, denoted h = f x g (or sometimes just h = fg), is defined:

 $h(\mathbf{X},\mathbf{Y},\mathbf{Z}) = f(\mathbf{X},\mathbf{Y}) \ge g(\mathbf{Y},\mathbf{Z})$

f(A,B)		g(B,C)		h(A,B,C)				
ab	0.9	bc	0.7	abc	0.63	ab~c	0.27	
a~b	0.1	b~c	0.3	a~bc	0.02	a~b~c	0.08	
~ab	0.4	~bc	0.2	~abc	0.28	~ab~c	0.12	
~a~b	0.6	~b~c	0.8	~a~bc	0.12	~a~b~c	0.48	

Summing a Variable Out of a Factor

- Let f(X,Y) be a factor with variable X (Y is a set)
- We *sum out* variable X from f to produce a new factor $h = \sum_X f$, which is defined: $h(\mathbf{Y}) = \sum_{X \in \text{Dom}(X)} f(x, \mathbf{Y})$

f(A	(,B)	h(B)			
ab	0.9	b	1.3		
a~b	0.1	~b	0.7		
~ab	0.4				
~a~b	0.6				

Restricting a Factor

- Let f(X,Y) be a factor with variable X (Y is a set)
- We *restrict* factor f *to* X=x by setting X to the value x and "deleting". Define $h = f_{X=x}$ as: h(Y) = f(x,Y)

f(A	,B)	$h(B) = f_{A=a}$			
ab	0.9	b	0.9		
a~b	0.1	~b	0.1		
~ab	0.4				
~a~b	0.6				

Variable Elimination: No Evidence

• Computing prior probability of query var X can be seen as applying these operations on factors

$$(A) \xrightarrow{B}_{f_2(A,B)} (C) \xrightarrow{f_3(B,C)}$$

- $P(C) = \sum_{A,B} P(C|B) P(B|A) P(A)$
 - $= \Sigma_{\rm B} \, {\rm P}({\rm C}|{\rm B}) \, \Sigma_{\rm A} \, {\rm P}({\rm B}|{\rm A}) \, {\rm P}({\rm A})$
 - $= \Sigma_{\rm B}\, f_3({\rm B,C})\, \Sigma_{\rm A}\, f_2({\rm A,B})\, f_1({\rm A})$
 - = $\Sigma_{B} f_{3}(B,C) f_{4}(B) = f_{5}(C)$

Define new factors: $f_4(B) = \Sigma_A f_2(A,B) f_1(A)$ and $f_5(C) = \Sigma_B f_3(B,C) f_4(B)$

Variable Elimination: No Evidence

• Here's the example with some numbers

$$(A) \xrightarrow{B}_{f_2(A,B)} (C) \xrightarrow{f_3(B,C)} (B,C)$$

f ₁ (A)		f ₂ (A,B)		f ₃ (B,C)		f4(B)		f ₅ (C)	
۵	0.9	ab	0.9	bc	0.7	b	0.85	С	0.625
~a	0.1	a~b	0.1	b~c	0.3	~Ь	0.15	~C	0.375
		~ab	0.4	~bc	0.2				
		~a~b	0.6	~b~c	0.8				

VE: No Evidence (Example 2)

 $P(D) = \Sigma_{A,B,C} P(D|C) P(C|B,A) P(B) P(A)$

- $= \Sigma_{C} P(D|C) \Sigma_{B} P(B) \Sigma_{A} P(C|B,A) P(A)$
- $= \Sigma_{\rm C} f_4({\rm C},{\rm D}) \Sigma_{\rm B} f_2({\rm B}) \Sigma_{\rm A} f_3({\rm A},{\rm B},{\rm C}) f_1({\rm A})$
- = $\Sigma_{C} f_{4}(C,D) \Sigma_{B} f_{2}(B) f_{5}(B,C)$
- $= \Sigma_{\rm C} f_4({\rm C},{\rm D}) f_6({\rm C})$

 $= f_7(D)$

Define new factors: $f_5(B,C)$, $f_6(C)$, $f_7(D)$, in the obvious way

Variable Elimination: One View

- One way to think of variable elimination:
 - write out desired computation using the chain rule, exploiting the independence relations in the network
 - arrange the terms in a convenient fashion
 - distribute each sum (over each variable) in as far as it will go
 - i.e., the sum over variable X can be "pushed in" as far as the "first" factor mentioning X
 - apply operations "inside out", repeatedly eliminating and creating new factors (note that each step/removal of a sum eliminates one variable)

Variable Elimination Algorithm

- Given query var Q, remaining vars Z. Let F be the set of factors corresponding to CPTs for $\{Q\} \cup Z$.
 - Choose an elimination ordering Z₁, ..., Z_n of variables in Z.
 For each Z_j -- in the order given -- eliminate Z_j ∈ Z as follows:

 (a) Compute new factor g_j = Σ_{Zj} f₁ x f₂ x ... x f_k, where the f_i are the factors in F that include Z_j
 (b) Remove the factors f_i (that mention Z_j) from F and add new factor g_j to F

 The remaining factors refer only to the query variable Q. Take their product and normalize to produce P(Q)

VE: Example 2 again

Factors: f₁(A) f₂(B) f₃(A,B,C) f₄(C,D) **Query:** P(D)? **Elim. Order:** A, B, C $\begin{array}{|c|c|c|c|c|} f_1(A) & & & & & & & \\ f_1(A) & & & & & & & \\ f_2(B) & & & & & & & \\ f_3(A,B,C) & & & & & \\ f_4(C,D) & & & & \\ \end{array}$

Step 1: Add $f_5(B,C) = \Sigma_A f_3(A,B,C) f_1(A)$ Remove: $f_1(A)$, $f_3(A,B,C)$ Step 2: Add $f_6(C) = \Sigma_B f_2(B) f_5(B,C)$ Remove: $f_2(B)$, $f_5(B,C)$ Step 3: Add $f_7(D) = \Sigma_C f_4(C,D) f_6(C)$ Remove: $f_4(C,D)$, $f_6(C)$ Last factor $f_7(D)$ is (possibly unnormalized) probability P(D)

Variable Elimination: Evidence

 Computing posterior of query variable given evidence is similar; suppose we observe C=c:

$$(A) \xrightarrow{B}_{f_2(A,B)} (C) \xrightarrow{f_3(B,C)}$$

 $P(A|c) = \alpha P(A) P(c|A)$ = $\alpha P(A) \Sigma_B P(c|B) P(B|A)$ = $\alpha f_1(A) \Sigma_B f_3(B,c) f_2(A,B)$ = $\alpha f_1(A) \Sigma_B f_4(B) f_2(A,B)$ = $\alpha f_1(A) f_5(A)$ = $\alpha f_6(A)$

New factors: $f_4(B) = f_3(B,c)$; $f_5(A) = \sum_B f_2(A,B) f_4(B)$; $f_6(A) = f_1(A) f_5(A)$

Variable Elimination with Evidence

Given query var Q, evidence vars E (observed to be e), remaining vars Z. Let F be the set of factors involving CPTs for $\{Q\} \cup Z$.

- Replace each factor f∈F that mentions a variable(s) in E with its restriction f_{E=e} (somewhat abusing notation)
- 2. Choose an elimination ordering $Z_1, ..., Z_n$ of variables in **Z**.
- 3. For each Z_j -- in the order given -- eliminate $Z_j \in \mathbf{Z}$ as follows:
 - (a) Compute new factor $g_j = \sum_{Zj} f_1 x f_2 x \dots x f_k$,

where the fi are the factors in F that include Zi

(b) Remove the factors f_i (that mention Z_j) from F and add new factor g_j to F

4. The remaining factors refer only to the query variable Q. Take their product and normalize to produce P(Q)

VE: Example 2 again with Evidence

$$f_{1}(A) \land f_{2}(B) \land f_{3}(A,B,C) \land f_{4}(C,D)$$

Restriction: replace $f_4(C,D)$ with $f_5(C) = f_4(C,d)$ Step 1: Add $f_6(A,B) = \Sigma_C f_5(C) f_3(A,B,C)$ Remove: $f_3(A,B,C), f_5(C)$ Step 2: Add $f_7(A) = \Sigma_B f_6(A,B) f_2(B)$ Remove: $f_6(A,B), f_2(B)$ Last factors: $f_7(A), f_1(A)$. The product $f_1(A) \ge f_7(A)$ is (possibly unnormalized) posterior. So... $P(A|d) = \alpha f_1(A) \ge f_7(A)$.

Factors: $f_1(A) f_2(B)$ $f_3(A,B,C) f_4(C,D)$ Query: P(A)? Evidence: D = d Elim. Order: C, B

Some Notes on the VE Algorithm

- After iteration j (elimination of Z_j), factors remaining in set F refer only to variables X_{j+1}, ... Z_n and Q. No factor mentions an evidence variable E after the initial restriction.
- Number of iterations: linear in number of variables
- Complexity is exponential in the number of variables.
 - Recall each factor has exponential size in its number of variables
 - Can't do any better than size of BN (since its original factors are part of the factor set)
 - When we create new factors, we might make a set of variables larger.

Some Notes on the VE Algorithm

- The size of the resulting factors is determined by elimination ordering! (We'll see this in detail)
- For *polytrees*, easy to find good ordering (e.g., work outside in).
- For general BNs, sometimes good orderings exist, sometimes they don't (then inference is exponential in number of vars).
 - Simply *finding* the optimal elimination ordering for general BNs is NP-hard.
 - Inference in general is NP-hard in general BNs

Elimination Ordering: Polytrees

- Inference is linear in size of network
 - ordering: eliminate only "singly-connected" nodes
 - e.g., in this network, eliminate D, A, C, X1,...; or eliminate X1,... Xk, D, A, C; or mix up...
 - result: no factor ever larger than original CPTs
 - eliminating B before these gives factors that include all of A,C, X1,... Xk !!!

Effect of Different Orderings

- Suppose query variable is D. Consider different orderings for this network
 - A,F,H,G,B,C,E:
 - good: why?
 - E,C,A,B,G,H,F:
 - bad: why?
- Which ordering creates smallest factors?
 - either max size or total
- which creates largest factors?

Relevance

- Certain variables have no impact on the query.
 - In ABC network, computing Pr(A) with no evidence requires elimination of B and C.
 - But when you sum out these vars, you compute a trivial factor (whose value are all ones); for example:
 - eliminating C: $f_4(B) = \sum_C f_3(B,C) = \sum_C Pr(C|B)$
 - 1 for any value of B (e.g., $Pr(c|b) + Pr(\sim c|b) = 1$)
- No need to think about B or C for this query

Relevance: A Sound Approximation

- Can restrict attention to *relevant* variables. Given query Q, evidence E:
 - Q is relevant
 - if any node Z is relevant, its parents are relevant
 - if $E \in E$ is a descendent of a relevant node, then E is relevant
- We can restrict our attention to the *subnetwork comprising only relevant variables* when evaluating a query Q

Relevance: Examples

- Query: P(F)
 - Relevant: F, C, B, A
- Query: P(F|E)
 - Relevant: F, C, B, A
 - Also: E, hence D, G
 - Intuitively, we need to compute
 P(C|E) = αP(C)P(E|C) to accurately
 compute P(F|E)
- Query: P(F|E, C)
 - Algorithm says all variables relevant; but really none except *C*, *F* since *C* cuts off all influence of others)
 - Algorithm is overestimating relevant set

