Lecture 5: Uncertainty CS486/686 Intro to Artificial Intelligence

2023-5-25

Pascal Poupart David R. Cheriton School of Computer Science

Outline

- Probability theory
- Uncertainty via probabilities
- Probabilistic inference

Terminology

Probability distribution:

- A specification of a probability for each event in our sample space
- Probabilities must sum to 1

- Assume the world is described by two (or more) random variables
 - Joint probability distribution
 - Specification of probabilities for all combinations of events

Joint distribution

- Given two random variables *A* and *B*:
- Joint distribution:

$$Pr(A = a \land B = b)$$
 for all a, b

Marginalisation (sumout rule):

$$Pr(A = a) = \Sigma_b Pr(A = a \land B = b)$$

$$Pr(B = b) = \Sigma_a Pr(A = a \land B = b)$$

Example: Joint Distribution

	Sunny		~Sunny		
	cold	~cold		cold	~cold
headache	0.108	0.012	headache	0.072	0.008
~headache	0.016	0.064	~headache	0.144	0.576

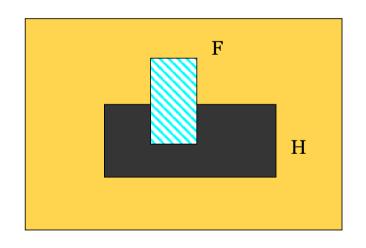
P(headache Λ sunny Λ cold) = \bigcirc /0 \checkmark

4.166.4

P(headache) = 0,08+0.012+0.072+0.08=0.2

Conditional Probability

• Pr(A|B): fraction of worlds in which B is true that also have A true

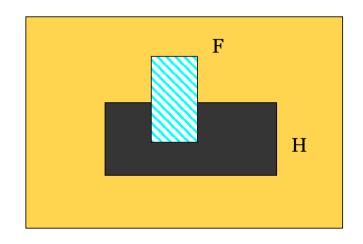


$$Pr(H) = 1/10$$

 $Pr(F) = 1/40$
 $Pr(H|F) = 1/2$

Headaches are rare and flu is rarer, but if you have the flu, then there is a 50-50 chance you will have a headache

Conditional Probability



$$H =$$
 "Have headache"
 $F =$ "Have Flu"
 $Pr(H) = 1/10$
 $Pr(F) = 1/40$
 $Pr(H|F) = 1/2$

Pr(H|F) = Fraction of flu inflicted worlds in which you have a headache = (# worlds with flu and headache)/(# worlds with flu) = (Area of "H and F" region)/(Area of "F" region) = $Pr(H \land F) / Pr(F)$

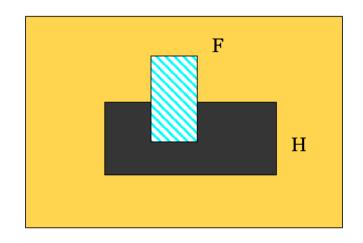
Conditional Probability

• Definition: $Pr(A|B) = Pr(A \land B) / Pr(B)$

• Chain rule: $Pr(A \land B) = Pr(A|B) Pr(B)$

Memorize these rules!

Inference



$$Pr(H) = 1/10$$

 $Pr(F) = 1/40$
 $Pr(H|F) = 1/2$

One day you wake up with a headache. You think "Drat! 50% of flues are associated with headaches so I must have a 50-50 chance of coming down with the flu"

Is your reasoning correct?

$$Pr(F \land H) = P(F)P(H|F) = \frac{1}{40}(\frac{1}{2}) = \frac{1}{80}$$

$$Pr(F|H) = \frac{1}{100} = \frac{1}{100} = \frac{1}{100}$$
UNIVERSITY OF WATERLOO

Example: Conditional Distribution

sunny			~sunny		
	cold	~cold		cold	~cold
headache	0.108	0.012	headache	0.072	0.008
~headache	0.016	0.064	~headache	0.144	0.576

Pr(headache
$$\Lambda$$
 cold | sunny) =
$$\frac{P(h, c, s)}{P(s)} = \frac{0.108}{0.0840.012 + 0.016 + 0.064} = 0.54$$
Pr(headache Λ cold | ~sunny) =
$$\frac{P(h, c, s)}{P(s)} = \frac{0.108}{0.072 + 0.016 + 0.064} = 0.09$$

Bayes Rule

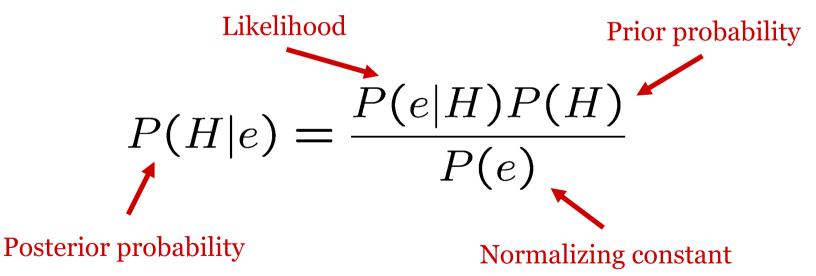
• Note: $Pr(A|B)Pr(B) = Pr(A\Lambda B) = Pr(B\Lambda A) = Pr(B|A)Pr(A)$

■ Bayes Rule:
$$Pr(B|A) = \frac{Pr(A|B)Pr(B)}{Pr(A)}$$

Memorize this!

Using Bayes' Rule for inference

- Often, we want to form a hypothesis about the world based on what we have observed
- Bayes' rule allows us to compute a belief about hypothesis H, given evidence e



More General Forms of Bayes Rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\sim A)P(\sim A)}$$

$$P(A|B \land X) = \frac{P(B|A \land X)P(A|X)}{P(B|X)}$$

$$P(A = v_i|B) = \frac{P(B|A = v_i)P(A = v_i)}{\sum_{k=1}^{n} P(B|A = v_k)P(A = v_k)}$$

Probabilistic Inference

- By probabilistic inference, we mean
 - given a prior distribution Pr(X) over variables X of interest, representing degrees of belief
 - and given new evidence E = e for some variable E
 - Revise your degrees of belief: posterior Pr(X|E=e)
- Applications:
 - Medicine: Pr(disease|symptom1, symptom2, ..., symptomN)
 - Troubleshooting: Pr(cause|test1, test2, ..., testN)

Issues

- How do we specify the full joint distribution over a set of random variables $X_1, X_2, ..., X_n$?
 - Exponential number of possible worlds
 - e.g., if X_i is Boolean, then 2^n numbers (or $2^n 1$ parameters, since they sum to 1)
 - These numbers are not robust/stable
- Inference is frightfully slow
 - Must sum over exponential number of worlds to answer queries

•
$$Pr(X_i) = \sum_{X_1} ... \sum_{X_{i-1}} \sum_{X_{i+1}} ... \sum_{X_n} Pr(X_1, X_2, ..., X_n)$$

$$Pr(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n | X_i) = \frac{P(X_1, \dots, X_n)}{P(X_i)} = \frac{P(X_1, \dots, X_n)}{\sum_{X_1 \dots X_{i-1}} \sum_{X_{i+1} \dots X_n} \Pr(X_1, \dots, X_n)}$$

Small Example: 3 Variables

Suriny		~Sunny			
	cold	~cold		cold	~cold
headache	0.108	0.012	headache	0.072	0.008
~headache	0.016	0.064	~headache	0.144	0.576

acumb.

$$Pr(headache) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2$$

CIINNI

 $Pr(headache \land cold | sunny) = Pr(headache \land cold \land sunny) / Pr(sunny)$

$$= 0.108/(0.108 + 0.012 + 0.016 + 0.064) = 0.54$$

 $Pr(headache \land cold | \sim sunny) = Pr(headache \land cold \land \sim sunny) / Pr(\sim sunny)$

$$= 0.072/(0.072 + 0.008 + 0.144 + 0.576) = 0.09$$

Intractable Inference

- How do we avoid the exponential blow up of joint distribution and probabilistic inference?
 - no solution in general
 - but in practice there is structure we can exploit

We'll use conditional independence

Independence

• Recall that *X* and *Y* are *independent* iff:

$$Pr(X = x) = Pr(X = x | Y = y)$$

 $\Leftrightarrow Pr(Y = y) = Pr(Y = y | X = x)$
 $\Leftrightarrow Pr(X = x, Y = y) = Pr(X = x) Pr(Y = y)$
 $\forall x \in dom(X), y \in dom(Y)$

- Intuitively, learning the value of *Y* doesn't influence our beliefs about *X* and vice versa.
- Example: Pr(Sunny|ToothCavity) = Pr(Sunny)Pr(ToothCavity|Sunny) = Pr(ToothCavity)

■ Two *variables X* and *Y* are conditionally independent given variable *Z*

$$Pr(X = x | Z = z) = Pr(X = x | Y = y, Z = z)$$

$$\Leftrightarrow Pr(Y = y | Z = z) = Pr(Y = y | X = x, Z = z)$$

$$\Leftrightarrow Pr(X = x, Y = y | Z = z) = Pr(X = x | Z = z) Pr(Y = y | Z = z)$$

$$\forall x \in dom(X), y \in dom(Y), z \in dom(Z)$$

- If you know the value of *Z* (*whatever* it is), nothing you learn about *Y* will influence your beliefs about *X*
- Example: Pr(ToothAche|ToothCavity, ToothCatch) = Pr(ToothAche|ToothCavity)Pr(ToothCatch|ToothCavity, ToothAche) = Pr(ToothCatch|ToothCavity)

What good is independence?

- Suppose (say, Boolean) variables $X_1, X_2, ..., X_n$ are mutually independent
 - We can specify full joint distribution using only n parameters (linear) instead of $2^n 1$ (exponential)
- How? Simply specify $Pr(x_1)$, ..., $Pr(x_n)$
 - From this we can recover the probability of any world or any (conjunctive) query easily
 - Recall $Pr(x_1, ..., x_n) = Pr(x_1) ... Pr(x_n)$

Example

• 4 independent Boolean random vars X_1, X_2, X_3, X_4

$$Pr(x_1) = 0.4, Pr(x_2) = 0.2, Pr(x_3) = 0.5, Pr(x_4) = 0.8$$

$$Pr(x_1, \sim x_2, x_3, x_4) = Pr(x_1) (1 - Pr(x_2)) Pr(x_3) Pr(x_4)$$

$$= (0.4)(0.8)(0.5)(0.8)$$

$$= 0.128$$

$$Pr(x_1, x_2, x_3 | x_4) = Pr(x_1) Pr(x_2) Pr(x_3) \mathbf{1}$$

$$= (0.4)(0.2)(0.5)(1)$$

$$= 0.04$$

The Value of Independence

- Complete independence reduces both *representation of joint distribution* and *inference* from $O(2^n)$ to O(n)!!
- Unfortunately, such complete mutual independence is very rare. Most realistic domains do not exhibit this property.
- Fortunately, most domains do exhibit a fair amount of conditional independence. We can exploit conditional independence for representation and inference as well.
- Bayesian networks do just this

An Aside on Notation

- Pr(X) for variable X (or set of variables) refers to the *(marginal) distribution* over X. Pr(X|Y) refers to the family of conditional distributions over X, one for each $y \in Dom(Y)$.
- Distinguish between Pr(X) -- which is a distribution and Pr(x) or $Pr(\sim x)$ (or $Pr(x_i)$ for non-Boolean vars) -- which are numbers. Think of Pr(X) as a function that accepts any $x_i \in Dom(X)$ as an argument and returns $Pr(x_i)$.
- Think of Pr(X|Y) as a function that accepts any x_i and y_k and returns $Pr(x_i|y_k)$. Note that Pr(X|Y) is not a single distribution; rather it denotes the family of distributions (over X) induced by the different $y_k \in Dom(Y)$

Exploiting Conditional Independence

- Consider a story:
 - If Pascal woke up too early *E*, Pascal probably needs coffee *C*; if Pascal needs coffee, he's likely grumpy *G*. If he is grumpy then it's possible that the lecture won't go smoothly *L*. If the lecture does not go smoothly then the students will likely be sad *S*.

E - Pascal woke up too early G - Pascal is grumpy S - Students are sad C - Pascal needs coffee E - The lecture did not go smoothly

- If you learned any of E, C, G, or L, would your assessment of Pr(S) change?
 - If any of these are seen to be true, you would increase Pr(s) and decrease $Pr(\sim s)$.
 - So S is not independent of E, or C, or G, or L.
- If you knew the value of L (true or false), would learning the value of E, C, or G influence Pr(S)?
 - Influence that these factors have on *S* is mediated by their influence on *L*.
 - Students aren't sad because Pascal was grumpy, they are sad because of the lecture.
 - So S is independent of E, C, and G, given L

- So S is *independent* of E, and C, and G, given L
- Similarly:
 - S is independent of E, and C, given G
 - G is independent of E, given C
- This means that:

$$Pr(S|L, \{G, C, E\}) = Pr(S|L)$$

 $Pr(L|G, \{C, E\}) = Pr(L|G)$
 $Pr(G|C, \{E\}) = Pr(G|C)$
 $Pr(C|E)$ and $Pr(E)$ don't "simplify"

• By the chain rule (for any instantiation of $S \dots E$):

$$Pr(S, L, G, C, E) = Pr(S|L, G, C, E) Pr(L|G, C, E) Pr(G|C, E) Pr(C|E) Pr(E)$$

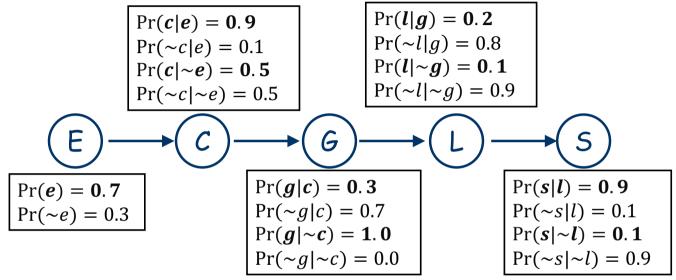
By our independence assumptions:

$$Pr(S, L, G, C, E) = Pr(S|L) Pr(L|G) Pr(G|C) Pr(C|E) Pr(E)$$

We can specify the full joint by specifying five *local conditional* distributions:

Pr(S|L); Pr(L|G); Pr(G|C); Pr(C|E); and Pr(E)

Example Quantification



- Specifying the joint requires only 9 parameters (if we note that half of these are "1 minus" the others), instead of 31 for the explicit representation
 - linear in number of variables instead of exponential!
 - linear generally if dependence has a chain structure

Inference is Easy

• Want to know Pr(g)? Use sum out rule:

$$P(g) = \sum_{c_i \in Dom(C)} \Pr(g \mid c_i) \Pr(c_i)$$

$$= \sum_{c_i \in Dom(C)} \Pr(g \mid c_i) \sum_{e_i \in Dom(E)} \Pr(c_i \mid e_i) \Pr(e_i)$$

These are all terms specified in our local distributions!

Inference is Easy

• Computing Pr(g) in more concrete terms:

$$Pr(c) = Pr(c|e) Pr(e) + Pr(c|\sim e) Pr(\sim e) = 0.8 * 0.7 + 0.5 * 0.3 = 0.78$$

$$Pr(\sim c) = Pr(\sim c|e) Pr(e) + Pr(\sim c|\sim e) Pr(\sim e) = 0.22$$

$$Pr(\sim c) = 1 - Pr(c), \text{ as well}$$

$$Pr(g) = Pr(g|c) Pr(c) + Pr(g|\sim c) Pr(\sim c) = 0.3 * 0.78 + 1.0 * 0.22 = 0.454$$

$$Pr(\sim g) = 1 - Pr(g) = 0.546$$