Lecture 4: Constraint Satisfaction
CS486/686 Intro to Artificial Intelligence

Pascal Poupart
David R. Cheriton School of Computer Science
Outline

- What are Constraint Satisfaction Problems (CSPs)?
- Standard search and CSPs
- Improvements
 - Backtracking
 - Backtracking + heuristics
 - Forward checking
Introduction

- In the last couple of lectures we have been solving problems by searching in a space of states
 - Treating states as black boxes, ignoring any structure inside them
 - Using problem-specific routines

- Today we study problems where the state structure is important
- **States:** all arrangements of 0, 1, ..., or 8 queens on the board
- **Initial state:** 0 queens on the board
- **Successor function:** Add a queen to the board
- **Goal test:** 8 queens on the board with no two of them attacking each other

64x63x...57 \(\approx 3 \times 10^{14} \) states
- **States:** all arrangements k queens ($0 \leq k \leq 8$), one per column in the leftmost k columns, with no queen attacking another

- **Initial state:** 0 queens on the board

- **Successor function:** Add a queen to the leftmost empty column such that it is not attacked

- **Goal test:** 8 queens on the board

2057 States
Introduction

- Earlier search methods studied often make choices in an arbitrary order

- In many problems the same state can be reached independent of the order in which the moves are chosen (commutative actions)

- Can we solve problems efficiently by being smart in the order in which we take actions?
4-Queens Constraint Propagation

Place a queen in a square

Remove conflicting squares from consideration
4-Queens Constraint Propagation

Place a queen in a square

Remove conflicting squares from consideration
Place a queen in a square

Remove conflicting squares from consideration
4-Queens Constraint Propagation

Place a queen in a square
Remove conflicting squares from consideration
CSP Definition

- A constraint satisfaction problem (CSP) is defined by \(\{V, D, C\} \) where
 - \(V = \{V_1, V_2, \ldots, V_n\} \) is a set of variables
 - \(D = \{D_1, \ldots, D_n\} \) is the set of domains, \(D_i \) is the domain of possible values for variable \(V_i \)
 - \(C = \{C_1, \ldots, C_m\} \) is the set of constraints
 - Each constraint involves some subset of the variables and specifies the allowable combinations of values for that subset
CSP Definition

- A state is an assignment of values to some or all of the variables
 \[\{ V_i = x_i, V_j = x_j, \ldots \} \]

- An assignment is consistent if it does not violate any constraints

- A solution is a complete, consistent assignment (“hard constraints”)
 - Some CSPs also require an objective function to be optimized (“soft constraints”)
Example 1: 8-Queens

- 64 variables V_{ij}, $i = 1$ to 8, $j = 1$ to 8
- Domain of each variable is $\{0,1\}$
- Constraints
 - $V_{ij} = 1 \implies V_{ik} = 0$ for all $k \neq j$
 - $V_{ij} = 1 \implies V_{kj} = 0$ for all $k \neq i$
 - Similar constraint for diagonals
 - $\sum_{ij} V_{ij} = 8$

Binary constraints relate two variables
Example 2 – 8 queens

- 8 variables $V_i, i = 1$ to 8
- Domain of each variable is $\{1, 2, \ldots, 8\}$
- Constraints
 - $V_i = k \rightarrow V_j \neq k$ for all $j \neq i$
 - Similar constraints for diagonals
Example 3 - Map Coloring

- 7 variables \{WA, NT, SA, Q, NSW, V, T\}
- Each variable has the same domain: \{red, green, blue\}
- No two adjacent variables have the same value:
 \[WA \neq NT, WA \neq SA, NT \neq SA, NT \neq Q, SA \neq Q, SA \neq NSW, SA \neq V, Q \neq NSW, NSW \neq V \]
Example 4 - Street Puzzle

The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

N_i = \{English, Spaniard, Japanese, Italian, Norwegian\}
C_i = \{Red, Green, White, Yellow, Blue\}
D_i = \{Tea, Coffee, Milk, Fruit-juice, Water\}
J_i = \{Painter, Sculptor, Diplomat, Violinist, Doctor\}
A_i = \{Dog, Snails, Fox, Horse, Zebra\}

Who owns the Zebra?
Who drinks Water?
Example 4 - Street Puzzle

(N₁ = English) ⇔ (C₁ = Red)

The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

N₁ = {English, Spaniard, Japanese, Italian, Norwegian}
C₁ = {Red, Green, White, Yellow, Blue}
D₁ = {Tea, Coffee, Milk, Fruit-juice, Water}
J₁ = {Painter, Sculptor, Diplomat, Violinist, Doctor}
A₁ = {Dog, Snails, Fox, Horse, Zebra}

(N₁ = Japanese) ⇔ (J₁ = Painter)
(N₁ = Norwegian)
(C₁ = White) ⇔ (C₁⁺₁ = Green)
(C₅ ≠ White)
(C₁ ≠ Green)

left as an exercise
Example 4 - Street Puzzle

\[
N_i = \{\text{English, Spaniard, Japanese, Italian, Norwegian}\}
\]
\[
C_i = \{\text{Red, Green, White, Yellow, Blue}\}
\]
\[
D_i = \{\text{Tea, Coffee, Milk, Fruit-juice, Water}\}
\]
\[
J_i = \{\text{Painter, Sculptor, Diplomat, Violinist, Doctor}\}
\]
\[
A_i = \{\text{Dog, Snails, Fox, Horse, Zebra}\}
\]

The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s
Example 4 - Street Puzzle

The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

\[
N_i = \{\text{English, Spaniard, Japanese, Italian, Norwegian}\}
\]

\[
C_i = \{\text{Red, Green, White, Yellow, Blue}\}
\]

\[
D_i = \{\text{Tea, Coffee, Milk, Fruit-juice, Water}\}
\]

\[
J_i = \{\text{Painter, Sculptor, Diplomat, Violinist, Doctor}\}
\]

\[
A_i = \{\text{Dog, Snails, Fox, Horse, Zebra}\}
\]

Implicit constraints:

\[
\forall i, j \in [1, 5], i \neq j, N_i \neq N_j
\]

\[
\forall i, j \in [1, 5], i \neq j, C_i \neq C_j
\]

...
Example 4 - Street Puzzle

The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left \(\rightarrow N_1 = \text{Norwegian} \)

The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk \(\rightarrow D_3 = \text{Milk} \)
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

Use inference to derive new facts
Example 4 - Street Puzzle

The Englishman lives in the Red house \(\rightarrow C_1 \neq \text{Red} \)
The Spaniard has a Dog \(\rightarrow A_1 \neq \text{Dog} \)
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left \(\rightarrow N_1 = \text{Norwegian} \)
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk \(\rightarrow D_3 = \text{Milk} \)
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice \(\rightarrow J_3 \neq \text{Violinist} \)
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

Use inference to derive new facts
Example 5 - Scheduling

Four tasks T_1, T_2, T_3, and T_4 are related by time constraints:
- T_1 must be done during T_3
- T_2 must be achieved before T_1 starts
- T_2 must overlap with T_3
- T_4 must start after T_1 is complete

- Are the constraints compatible?
- What are the possible time relations between two tasks?
- What if the tasks use resources in limited supply?
Example 6 - 3-Sat

- n Boolean variables, V_1, \ldots, V_n

- K constraints of the form $V_i \lor V_j \lor V_k$ where V_i is either true or false

- NP-complete
Properties of CSPs

- Types of variables
 - Discrete and finite
 - Map colouring, 8-queens, Boolean CSPs
 - Discrete variables with infinite domains
 - Scheduling jobs in a calendar
 - Require a constraint language \((\text{Job}_1 + 3 \leq \text{Job}_2)\)
 - Continuous domains
 - Scheduling on the Hubble telescope
 - Linear programming
Properties of CSPs

- Types of constraints
 - **Unary** constraint relates a single variable to a value
 - *Queensland* = *Blue*, *SA* ≠ *Green*
 - **Binary** constraint relates two variables
 - *SA* ≠ *NSW*
 - Can use a constraint graph to represent CSPs with only binary constraints
 - **Higher order constraints** involve three or more variables
 - *Alldiff* (*V*₁, ..., *V*ₙ)
 - Can use a constraint hypergraph to represent the problem
CSPs and search

- N variables $V_1, ..., V_n$
- Valid assignment: $\{V_1 = x_1, ..., V_k = x_k\}$ for $0 \leq k \leq n$ such that values satisfy constraints on the variables
- States: valid assignments
- Initial state: empty assignment
- Successor: $\{V_1 = x_1, ..., V_k = x_k\} \rightarrow \{V_1 = x_1, ..., V_k = x_k, V_{k+1} = x_{k+1}\}$
- Goal test: complete assignment
- If all domains have size d, then there are $O(d^n)$ complete assignments
CSPs and commutativity

- CSPs are commutative!
 - The order of application of any given set of actions has no effect on the outcome
 - When assigning values to variables we reach the same partial assignment, no matter the order

- All CSP search algorithms generate successors by considering possible assignments for only a single variable at each node in the search tree
CSPs and commutativity

- 3 variables V_1, V_2, V_3
- Let the current assignment be $A = \{V_1 = x_1\}$
- Pick variable V_3
- Let domain of V_3 be $\{a, b, c\}$
- The successors of A are
 \[
 \begin{align*}
 &\{V_1 = x_1, V_3 = a\} \\
 &\{V_1 = x_1, V_3 = b\} \\
 &\{V_1 = x_1, V_3 = c\}
 \end{align*}
 \]
Backtracking Search

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
 return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment,csp) returns a solution, or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(Variables[csp], assignment, csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to Constraints[csp] then
 add { var = value } to assignment
 result ← RECURSIVE-BACKTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove { var = value } from assignment
 return failure
 return failure

Depth first search that chooses values for one variable at a time
Backtracks when a variable has no legal values to assign
Backtracking
Backtracking
Backtracking

0

WA=blue

WA=red

WA=green

NT=blue

NT=red

NT=green

WA

NT

Q

SA

NSW

V

T
Backtracking

0

WA=blue

WA=red

WA=green

NT=blue

NT=red

NT=green

SA=blue

SA=red

SA=green

WA

NT

Q

NSW

T
Backtracking and efficiency

- Backtracking search is an uninformed search method
 - Not very efficient

- We can do better by thinking about the following questions
 - Which variable should be assigned next?
 - In which order should its values be tried?
 - Can we detect inevitable failure early (and avoid same failure in other paths)?
Most constrained variable

- Choose the variable which has the fewest “legal” moves
 - AKA minimum remaining values (MRV) heuristic

\[D_{NT} = \{green, blue\} \]
\[D_{SA} = \{green, blue\} \]
\[D_{others} = \{red, green, blue\} \]
\[D_{SA} = \{blue\} \]
\[D_{Q} = \{blue, red\} \]
\[D_{others} = \{red, green, blue\} \]
Most constraining variable

- Most constraining variable:
 - choose the variable with the most constraints on remaining variables
- Tie-breaker among most constrained variables

SA is involved in 5 constraints
Least-constraining value

• Given a variable, choose the least constraining value:
 – the one that rules out the fewest values in the remaining variables
Forward checking

- The third question was
 - Is there a way to detect failure early?

- Forward checking
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values
Forward Checking in Map Coloring

<table>
<thead>
<tr>
<th></th>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
</tr>
</tbody>
</table>
Forward Checking in Map Coloring

Forward checking removes the value Red of NT and of SA
Forward Checking in Map Coloring

<table>
<thead>
<tr>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
</tr>
<tr>
<td>R</td>
<td>GB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>GB</td>
<td>RGB</td>
</tr>
<tr>
<td>R</td>
<td>GB</td>
<td>G</td>
<td>RGB</td>
<td>RGB</td>
<td>GB</td>
<td>RGB</td>
</tr>
</tbody>
</table>
Forward Checking in Map Coloring

<table>
<thead>
<tr>
<th></th>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
</tr>
<tr>
<td>R</td>
<td>GB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>GB</td>
<td>R</td>
<td>RGB</td>
</tr>
<tr>
<td>R</td>
<td>B</td>
<td>G</td>
<td>RB</td>
<td>RGB</td>
<td>B</td>
<td>R</td>
<td>RGB</td>
</tr>
<tr>
<td>R</td>
<td>B</td>
<td>G</td>
<td>RB</td>
<td>B</td>
<td>R</td>
<td>R</td>
<td>RGB</td>
</tr>
</tbody>
</table>
Empty set: the current assignment \(\{(WA \leftarrow R), (Q \leftarrow G), (V \leftarrow B)\}\) does not lead to a solution.
Example: 4 Queens

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>4</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

\[
\begin{array}{cccc}
X_1 & \{1,2,3,4\} & \text{\textbullet} & \text{\textbullet} \\
X_2 & \{1,2,3,4\} & \text{\textbullet} & \text{\textbullet} \\
X_3 & \{1,2,3,4\} & \text{\textbullet} & \text{\textbullet} \\
X_4 & \{1,2,3,4\} & \text{\textbullet} & \text{\textbullet} \\
\end{array}
\]
Example: 4 Queens

1 2 3 4

1

2

3

4

X1
\{1,2,3,4\}

X2
\{1,2,3,4\}

X3
\{1,2,3,4\}

X4
\{1,2,3,4\}
Example: 4 Queens

X1
{1,2,3,4}

X2
{ ,3,4}

X3
{ ,2,4}

X4
{2,3, }
Example: 4 Queens

1 2 3 4

1 2 3 4

X1 \{1,2,3,4\}

X2 \{ ,3,4\}

X3 \{ ,2,4\}

X4 \{ ,2,3, \}
Example: 4 Queens

No possibilities for X3, backtrack trying different value for X2
Example: 4 Queens

X1
\{1,2,3,4\}

X2
\{ , ,3,4\}

X3
\{ ,2, ,4\}

X4
\{ ,2,3, \}
Example: 4 Queens

X1: {1,2,3,4}
X2: {, ,3,4}
X3: {,2, ,}
X4: {, ,3, ,}
Example: 4 Queens

X1: \{1,2,3,4\}
X2: \{, ,3, 4\}
X3: \{, 2, ,\}
X4: \{,,3,\}
Example: 4 Queens

No possibilities for X4, backtrack trying different value for X1
Example: 4 Queens

1 2 3 4

X1 \{1,2,3,4\}

X2 \{1,2,3,4\}

X3 \{1,2,3,4\}

X4 \{1,2,3,4\}
Example: 4 Queens

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **X1**: \{1,2,3,4\}
- **X2**: \{, , ,4\}
- **X3**: \{1, ,3,\}
- **X4**: \{1, ,3,4\}
Example: 4 Queens

X1
{1,2,3,4}

X2
{, , ,4}

X3
{1, ,3, }

X4
{1, ,3,4}
Example: 4 Queens

1 2 3 4

X1 \{1,2,3,4\}

X2 \{ , , ,4\}

X3 \{ 1, , , \}

X4 \{ 1, ,3, \}
Example: 4 Queens

Example:

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & & & \\
2 & & & \\
3 & & & \\
4 & & & \\
\end{array}
\]

\[
\begin{array}{cccc}
X1 & X2 & X3 & X4 \\
\{1,2,3,4\} & \{, , ,4\} & \{1, , \} & \{1, ,3, \} \\
\end{array}
\]
Example: 4 Queens

1 2 3 4

1
2
3
4

X1
\{1,2,3,4\}

X2
\{, , ,4\}

X3
\{1, , \}

X4
\{, , 3,\}
Example: 4 Queens

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & & & \\
2 & & & \\
3 & & & \\
4 & & & \\
\end{array}
\]

\[
\begin{array}{c}
X1 \\
\{1,2,3,4\} \\
X2 \\
\{ , , ,4\} \\
X3 \\
\{1, , , \} \\
X4 \\
\{ , , 3,\} \\
\end{array}
\]
Summary

- What you should know
 - How to formalize problems as CSPs
 - Backtracking search
 - Heuristics
 - Variable ordering
 - Value ordering
 - Forward checking