Outline

- Using knowledge
 - Heuristics

- Best-first search
 - Greedy best-first search
 - A* search
 - Other variations of A*
Recall from last lecture

- Uninformed search methods expand nodes based on “distance” from start node
 - Never look ahead to the goal, no domain specific info needed

- But, we often have some additional knowledge about the problem
 - E.g. in traveling around Romania we know the distances between cities so we can measure the overhead of going in the wrong direction
Informed Search

- Our knowledge is often about the **merit of nodes**
 - Value of being at a node

- Different notions of merit
 - If we are concerned about the **cost of the solution**, we might want a notion of how expensive it is to get from a state to a goal
 - If we are concerned with **minimizing computation**, we might want a notion of how easy it is to get from a state to a goal

- We will focus on **cost of solution**
Informed search

- We need to develop a domain specific **heuristic function, $h(n)$**

- $h(n)$ **guesses** the cost of reaching the goal from node n
 - We often have some information about the problem that can be used in forming a heuristic function (i.e., heuristics are **domain specific**
Informed search

- If $h(n_1) < h(n_2)$ then we guess that it is cheaper to reach the goal from n_1 than it is from n_2

- We require

 $h(n) = 0$ when n is a goal node

 $h(n) \geq 0$ for all other nodes
Greedy best-first search

- Use the heuristic function, $h(n)$, to rank the nodes in the fringe

- Search strategy
 - Expand node with lowest h-value

- Greedily trying to find the least-cost solution
Greedy best-first search: Example

Path cost

Heuristic function

h=4
h=3
h=2
h=1
h=0

S → A → B → C → G

2 1 1 2
4
Example continued

Example continued
Example continued

```
h=4
S -> A
h=3
A -> B
h=2
B -> C
h=1
C -> G
h=0
C -> B
```

4

2
1
1
2
Example continued
Example continued

![Diagram](image-url)
Example continued

Greedy best-first is not optimal

Found the goal
Path is S, A, C, G
Cost of the path is 2+4+2=8

But cheaper path is S, A, B, C, G
With cost 2+1+1+2=6
Another Example

```
\[ S \rightarrow A \rightarrow B \rightarrow G \]
```

- \(h=4 \) from \(S \) to \(A \)
- \(h=3 \) from \(A \) to \(B \)
- \(h=4 \) from \(B \) to \(G \)
- \(h=0 \) from \(G \) to \(A \)

- \(h=1 \) from \(C \) to \(A \)
- \(h=1 \) from \(A \) to \(C \)

\(h=1 \) from \(C \) to \(B \)
Another Example

Greedy best-first can get stuck in loops
Properties of greedy search

- Not optimal!
- Not complete!
 - If we check for repeated states then we are ok
- Exponential space in worst case since need to keep all nodes in memory
- Exponential worst case time $O(b^m)$ where m is the maximum depth of the tree
 - If we choose a good heuristic then we can do much better
A* Search

- Greedy best-first search is too greedy
 - It does not take into account the cost of the path so far!

- Define $f(n) = g(n) + h(n)$
 - $g(n)$ is the cost of the path to node n
 - $h(n)$ is the heuristic estimate of cost of reaching goal from node n

- A* search
 - Expand node in fringe (queue) with lowest f value
A* Example

1. Expand S
2. Expand A
3. Choose between B ($f(B)=3+2=5$) and C ($f(C)=6+1=7$)) expand B
4. Expand C
5. Expand G – recognize it is the goal
When should A* terminate?

- As soon as we find a goal state?
When should A* terminate?

- As soon as we find a goal state?

A* terminates only when goal state is popped from the queue
Is A* Optimal?

![Diagram showing the paths and costs between S, A, and G.]

- From S to A: 1
- From A to G: 1
- From S to G: 3

h=6
Is A* Optimal?

No. This example shows why not.
Admissible heuristics

- Let $h^*(n)$ denote the true minimal cost to the goal from node n

- A heuristic, h, is admissible if
 $$h(n) \leq h^*(n) \text{ for all } n$$

- Admissible heuristics never overestimate the cost to the goal
 - Optimistic
Optimality of A*

If the heuristic is admissible then A* with tree-search is optimal

Let G be an optimal goal state, and $f(G) = f^* = g(G)$.
Let G_2 be a suboptimal goal state, i.e., $f(G_2) = g(G_2) > f^*$.
Assume for contradiction that A* selects G_2 from queue. (A* terminates with suboptimal solution)
Let n be a node that is currently a leaf node on an optimal path to G.

Since h is admissible, $f^* \geq f(n)$.
If n is not chosen for expansion over G_2, we must have $f(n) \geq f(G_2)$
So $f^* \geq f(G_2)$. Because $h(G_2) = 0$, we have $f^* \geq g(G_2)$, contradiction.
A* and revisiting states

What if we revisit a state that was already expanded?
A* and revisiting states

What if we revisit a state that was already expanded?

If we allow states to be expanded again, we might get a better solution!
Optimality of A*

- To search graphs, we need something stronger than admissibility
 - **Consistency (monotonicity):** \(h(n) \leq cost(n, n') + h(n') \) \(\forall n, n' \)
 - Almost any admissible heuristic function will also be consistent

- A* graph-search with a consistent heuristic is optimal
Properties of A*

- **Complete** (assuming finite branching factor and positive costs)
 - Along any path, \(f \) will eventually increase and the algorithm will eventually try all paths. Hence a solution will be found if there exists one.

- Exponential time complexity in worst case
 - A good heuristic will help a lot here
 - \(O(bm) \) if the heuristic is perfect

- Exponential space complexity
Memory-bounded heuristic search

- A* keeps most generated nodes in memory
 - On many problems A* will run out of memory

- Iterative deepening A* (IDA*)
 - Like IDS, but change f-cost rather than depth at each iteration

- SMA* (Simplified Memory-Bounded A*)
 - Uses all available memory
 - Proceeds like A* but when it runs out of memory it drops the worst leaf node (one with highest f-value)
 - If all leaf nodes have the same f-value then it drops oldest and expands the newest
 - Optimal and complete if depth of shallowest goal node is less than memory size
Heuristic Functions

- A good heuristic function can make all the difference!

- How do we get heuristics?
 - One approach is to think of an easier problem and let $h(n)$ be the cost of reaching the goal in the easier problem.
8-puzzle

Start State

Goal State
8-puzzle

Relax the game:
1. Can move tile from position A to position B if A is next to B (ignore whether or not position is blank)
2. Can move tile from position A to position B if B is blank (ignore adjacency)
3. Can move tile from position A to position B
8-puzzle continued

- 3) leads to misplaced tile heuristic
 - To solve this problem need to move each tile into its final position
 - Number of moves = number of misplaced tiles
 - Admissible

- 1) leads to manhattan distance heuristic
 - To solve the puzzle need to slide each tile into its final position
 - Admissible
8-puzzle continued

- $h_3 = \text{misplaced tiles}$

- $h_1 = \text{manhattan distance}$

- Note h_1 dominates h_3

 $h_3(n) \leq h_1(n)$ for all n

 Which heuristic is best?
Designing heuristics

- Relaxing the problem (as just illustrated)

- Precomputing solution costs of subproblems and storing them in a pattern database

- Learning from experience with the problem class
Conclusion

- What you should now know
 - Thoroughly understand A* and IDA*
 - Be able to trace simple examples of A* and IDA* execution
 - Understand admissibility and consistency of heuristics
 - Proof of completeness, optimality
 - Criticize greedy best-first search