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Outline

Multi-agent Reinforcement Learning (MARL)

Stochastic Games

Opponent Modelling
= Fictitious Play
= Solving (Unique) Equilibrium

Cooperative Stochastic Games
= Joint Q learning
= Convergence properties

Competitive Stochastic Games (Zero-sum games)
= Minimax Q learning
= Convergence properties

Mixed Cooperative-Competitive Stochastic Games (General-sum games)
= Nash Q learning
= Convergence properties
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Multi-agent Reinforcement Learning

Multi-agent Games + Sequential decision making

Environment

A
State / Observation 1, State / Observation 2, State / Observation N,
Reward 1 Reward 2 Joint Action Reward N
Action 1 Action 2 Action N
) 4 Y \ 4
Agent 1 Agent2 | = = = = | Agent N

Newer field with unique challenges and opportunities
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Stochastic Games

= (Simultaneously moving) Stochastic Game (N-agent MDP)
Tuple (N, S, A', ..., AN R ...,RN,T,y)

N: Number of agents

S: Shared state space s € S

A’: Action space of agent j
(al,az, Lavy e Alx A%2x...x AN

R’: Reward function for agent j - Ri(s,a', ...,a") = Pr(r/|s,a', ....a
M)

")

Unknown Models

T: Transition function - Pr(s’|s,a', ..., a

y: Discount factor: 0 <y <1
= Discounted: y < 1 Undiscounted: y = 1

Horizon (i.e., # of time steps): h
= Finite horizon: 7 € N Infinite horizon: 7 = oo
- Policy (strategy) for agenti- 7' : S — Q(A")
= Goal: Find optimal policy such that z* = {z ", ..., 7} }, where
h
m¥ = arg max Z y'E[ri(s,a)], wherea = {a',...,a"}and x = {x!, ..., 2V}
Ca—
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Playing a stochastic game

Players choose their actions at the same time

= No communication with other agents
= No observation of other player’s actions

Each player chooses a strategy z‘ which is a mapping from states to actions and can be either
= Mixed strategy: Distribution over actions for at least one state

« Pure strategy: One action with prob 100 % for all states

At each state, all agents face a stage game (normal form game) with the Q values of the current
state and joint action of each player being the utility for that player

The stochastic game can be thought of as a repeated normal form game with a state representation
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Optimal Policy

In MARL, the optimal policy should correspond to some equilibrium of the stochastic game

The most common solution concept is the Nash equilibrium

Let us define a value function for the multi-agent setting

0
A .
vis) 2 Y yElr!|s, = s, 7]
=0
Nash equilibrium under the stochastic game satisfies

v ) =v o (s)

(md ) (n,7)

Vs € S5;V; YVl # ﬂi
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Independent learning

= Naive approach: Apply the single agent Q-learning directly
= Each agent would update its Q-values using the Bellman update:

O/(s,a)) « Q/(s,a’) + a(rj + y max Q'(s',a’) — Q(s, aj)>

= Each agent assumes that the other agent(s) are part of the environment

= Merit: Simple approach, easy to apply

= Demerit: Might not work well against opponents playing complex strategies
= Demerit: Non-stationary transition and reward models

= Demerit: No convergence guarantees
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Cooperative Stochastic Games

= (Simultaneously moving) Stochastic Game (N-agent MDP)
- Tuple (N, S, A, ..., AN R ...,RN.T,y)

N: Number of agents

S: Shared state space s € S

A’: Action space of agent j
(a',a?, ....aVy e Al x A?x ... x AV

R’: Reward function for agentj—R(s,al, cnah) = Pr(rls,al, ...,aN),Vj
M

Unknown Models

T: Transition function - Pr(s’|s,a’, ..., a

y: Discount factor: 0 <y <1
= Discounted: y < 1 Undiscounted: y = 1

Horizon (i.e., # of time steps): h
= Finite horizon: 7 € N Infinite horizon: 7 = oo
- Policy (strategy) for agenti- 7' : S — Q(A")
= Goal: Find optimal policy such that z* = {z ", ..., 7} }, where

h
m* = arg max Z y'E[ri(s,a)], wherea = {a',...,a"}and x = {x!, ..., 2V}
T

=0
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Optimal Policy

 The equilibrium in the case of cooperative stochastic games is the Pareto
dominating (Nash) equilibrium

« Each stage game of this stochastic game faces a coordination game
« There exists a unique Pareto dominating (Nash) equilibrium in utilities

Bob
Baseball Soccer
Baseball 2,2 0,0
Alice
0,0 1,1

Soccer
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Opponent Modelling

= Note that an agent’s response requires knowledge of other agent’s actions

= This is a simultaneously move game where each agent does not know what the other agents
will do

= So each agent should maintain a belief over other agents actions at current state

= This process of maintaining and updating a belief over the next actions of other agents is called
opponent modelling

= Types of Opponent Modelling:
= Fictitious Play
= Gradient Based Methods
= Solving Unique Equilibrium (for each stage game)
= Bayesian Approaches
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Fictitious Play

Each agent assumes that all opponents are playing a stationary mixed strategy
Agents maintain a count of number of times another agent performs an action

nti(s, a)«— 1+ nti_l(s, aj), Vj, Vi

Agents update and sample from their belief about this strategy at each state according to

n,f(s, a.)
/ /
Zaj’ ntl(sa Clj)

The term /4]?; [(s) is sampled from an empirical distribution of past actions of other agent
(mixed strategy)

IMJZJ(S) ~

Agents calculate best responses according to this belief
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Learning in cooperative stochastic games

= Algorithm: Joint action learner (JAL) or Joint Q learning (JQL)
= Challenge: Respond to environment as well as opponent(s)
= Same as Q learning but agents also include the opponent action in Q-updates
= Each agent would update its Q-values using the Bellman update:
Ql(s,a’,a™y « Ql(s,a’,a™) + a(rj + y max Q/(s',a’,a ™) — Ql(s, &, a‘j))
a’

= Need to balance exploration exploitation tradeoff
= Objective for agent: Find the optimal policy for best response
= Objective for system: Find the NE of the stochastic game (or Nash ) function for the game)

= Nash Q function: Agent’s immediate reward and discounted future rewards when all agents follow the NE
policy

Qi(s.a) = ri(s.a) +7 ) P(s'|s,a)'(s', zl, ... z)

s'es
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Joint Q learning

JointQlearning(s, Q)
Repeat
Repeat for each agent i
Select and execute 4
Observe s’, r anda™, wherea™ = {a', ...,a" 1, a', ..., a"}
Update counts: n(s,a) < n(s,a) + 1
Update counts: nti(s, aj) — 1+ nti_l(s, aj), Vj

Learning rate: o «
n(s, a)

Update Q-value:
Oi(s.al.a™) — Qi(s.a'.a™) + a<ri +y max Qs', @, w5, ... () — Q€. ai,a—i))
R

. I
Until convergence of QO ol universiTy oF
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Convergence of joint Q learning

= If the games is finite (finite agents and finite number of strategies for each agent), then fictitious
play will converge to true response of opponent(s) in the time limit in self-play

= Self-play: All agents learn using the same algorithm
= Joint Q-learning converges to Nash (Q-values in a cooperative stochastic game if
= Every state is visited infinitely often (due to exploration)

= The learning rate a is decreased fast enough, but not too fast
(sufficient conditions for a):

(1) ) a,— o (2) ) (@) < o

= In cooperative stochastic games, the Nash Q-values are unique (guaranteed unique equilibrium point in
utilities)
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Joint Q learning

JointQlearning(s, Q)
Repeat
Repeat for each agent i
Select and execute 4
Observe s’, r anda™, wherea™ = {a', ...,a" 1, a', ..., a"}
Update counts: n(s,a) < n(s,a) + 1
Update counts: nti(s, aj) — 1+ nti_l(s, aj), Vj

Learning rate: o «
n(s, a)

Update Q-value:
Oi(s.al.a™) — Qi(s.a'.a™) + a<ri +y max Qs', @, w5, ... () — Q€. ai,a—i))
R

. I
Until convergence of O ol universiTy oF
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Common exploration methods
« c-greedy:

= With probability ¢, execute random action

. Otherwise execute best action a* = arg max Q'(s, a’, u{(s), ..., pp(s))

a

» Boltzmann exploration

= Increasing temperature T increases stochasticity

Qi(s,al, 4§ (), ... ()
T

Pr(a) =

Qi(s, al, Jh (5), ..., iy (5))

2,6 7
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Competitive Stochastic Games

» (Simultaneously moving) Stochastic Game (N-agent MDP)
= Tuple (N, S, Al A% R\ R% T, Y)

N: Number of agents

S: Shared state space s € S

A’: Action space of agent j
(a',a*) € A'x A?

R/: Reward function for agent j - Rj(s, al, a2) = Pr(r{ | s, atl, atz), Vj

Unknown Models

- Condition on Reward function: 7' + 7 = 0, V¢
« T: Transition function - Pr(s’|s,a', a®)
= y: Discount factor: 0 <y <1

= Discounted: y < 1 Undiscounted: y = 1
= Horizon (i.e., # of time steps): h

» Finite horizon: 7 € N Infinite horizon: 4 = oo
= Policy (strategy) for agenti- 7' : S — Q(AY)

« Goal: Find optimal policy such that #* = {7*, ..., 7z;\‘;}, where
h
¥ = arg max Z:; y'E,[ri(s,a)], wherea £ {a',a’} and n £ {z!, z?}
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Optimal Policy

« The equilibrium in the case of competitive stochastic games is the min-max Nash
equilibrium

« Each stage game of this stochastic game faces a zero-sum game
« There exists a unique min-max (Nash) equilibrium in utilities
« Optimal min-max value function

V/(s) = max min[r/(s, @/, a™) + }/2 Pr(s’| s, &, a)Vi(s")]

a’ a’

« For a competitive stochastic game there exists a unique min-max value function
and hence a unique min-max Q-function
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-
Learning in competitive stochastic games

= Algorithm: Minimax Q-Learning

= Q-values for each agent j are over joint actions: Q/(s, @/, a™)
= § = State
« @/ = action
« a~/ = opponent action

« Instead of playing the best Q/(s, @/, a™) play min-max Q

Q/(s,a’,a™) — (1 —a)Q/(s,a’,a™) + a(r/ + yVi(s"))

VI(s") «max min Q'(s’, @', a™)
a’  a™

A WATERLOO
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Minimax Q learning

Minimax Qlearning(s, a, O*)
Repeat
Repeat for each agent
Select and execute action ¢’
Observe s’,a™ and r
Update counts: n(s, a) I— n(s,a) + 1

Learning rate: o «
n(s, a)

Update Q-value:
Ql(s,a’,a™) — (1 — a)QI(s,a’,a™) + a(r/ + y max min Q/(s’, a’, a 7))

al a7
/
AR )

Until convergence of O*

Return QO*
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CS486/686 Spring 2023 - Lecture 23 - Sriram Ganapathi Subramanian 20 @ WATE RLOO




Opponent Modelling

In a competitive game rational agents always take a min-max action

There is no requirement for a separate opponent modelling strategy in self-play

However:

= Other agents could use different algorithms
= Computing the min-max action can be time consuming

Alternative: Fictitious play
= Theorem: Fictitious play also converges in competitive zero-sum games
» Theorem: Fictitious play converges to the min-max action in self-play
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Convergence of Minimax Q learning

= Convergence in self-play
= Minimax Q-learning converges to min-max equilibrium in a competitive stochastic game
if:
= Every state is visited infinitely often (due to exploration)

» The learning rate « is decreased fast enough, but not too fast
(sufficient conditions for a):

1) ) a,— (2) ) (@, < oo

= In a competitive stochastic games, the Nash Q-values are unique (guaranteed unique min-max
equilibrium point in utilities)
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Exploration vs Exploitation Tradeoff

= Same as Q-learning and Joint Q learning
= e-greedy
= Play random action with probability €

» Play min-max action with probability 1 — €

(or)

= Play max action based on fictitious belief
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(Mixed) Stochastic Games/ General-sum Stochastic Game

» (Simultaneously moving) Stochastic Game (N-agent MDP)
= Tuple (N,S,Al, AN R' ... RV, T,y)

N: Number of agents

S: Shared state space s € S

A’: Action space of agent j
(al,az, Lal) e Alx A?x ... x AN
R/: Reward function for agentj—Rj(s,al, ...,aN) = Pr(rjls,al, |

Rewards of all agents can be related arbitrarily Unknown Models
N
)

T: Transition function - Pr(s’| s, a L ..., a

y: Discount factor: 0 <y <1
= Discounted: y < 1 Undiscounted: y = 1

Horizon (i.e., # of time steps): h
» Finite horizon: h € N Infinite horizon: & = oo

Policy (strategy) for agenti- 7' : S — Q(AY)

= Goal: Find optimal policy such that #* = {z}", ..., 7]}, where
h
ﬂl.* = arg mﬂel}X Z yt[E,,[rti(s, a)], where a = {al, ...,aN} and & £ {71'1, . 72'N}
=0
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Optimal Policy

 The equilibrium in the case of competitive stochastic games is the (mixed strategy)
Nash equilibrium for the stochastic game

« Nash theorem guarantees at-least one mixed strategy NE exists

There could be multiple Nash equilibria

Objective for agent: Find the optimal policy for best response

Objective for system: Find the NE of the stochastic game (or Nash ) function for the
game)

Nash Q function: Agent’s immediate reward and discounted future rewards when all
agents follow the NE policy

Q.(s,a) =r'(s,a)+y 2 P(s'| s, a)vi(s’, m,}, ey TT)
s'e§
= Problem: Which NE should we converge to?
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Learning in General-sum stochastic games

» Algorithm: Nash Q-learning

= Assumption: Self-play

» Every agent maintains the ) values of all other agents

= At each state, every agent face a stage (normal form) game

» Utilities of the normal form game are the ) values for each action for each agent

« Need to calculate NE of the normal form game 7' (s")---7"(s")
= Each agent would update its Q-values using the Bellman update:

0i(s, al, a7y — (1 — @)Q/(s, al, a ) + a(rf + yNasth(s’))>
where
NashQ/(s") = z'(s")-+-7"(s") - Q/(s")
« Here, 7/(s’) is a vector containing distribution of probability of each action (mixed strategy)

« Here, Q/(s") is a vector containing Q values for all actions of the agent j
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Nash Q learning

NashQ learning(s, a, 0*)
Repeat
Repeat for each agent

Select and execute action @/

Observe s’,a7andr = r!, ..., /"

Update counts: n(s,a) < n(s,a) + 1

Learning rate: o «
n(s,a)

Update Q-value for everyj = 1,...,n:
Ql(s,a) — (1 — @)Q!(s,@) + a(r’ + yNashQl(s"))
S« S
Until convergence of O*
Return Q* UNIVERSITY OF
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Opponent Modelling

= Note: Each agent is maintaining Q-values of all agents
= Solution 1: Agents can take equilibrium action if unique
= Problem: Non-unique equilibria in practice
= Problem: Equilibrium computation can take a long time

= Problem: Convergence only under strong assumptions (unique equilibrium)
= Solution 2: Fictitious play

= Problem:Convergence only under strong assumptions (unique equilibrium)
= Solution 3: Assume every agent is playing independent learning

= Problem: No convergence guarantees
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Convergence of Nash Q-learning

= Convergence in self-play (under strong assumptions)
= Nash Q-learning converges to the NE in a general sum stochastic game if
= Every state is visited infinitely often (due to exploration)

= The learning rate «a is decreased fast enough, but not too fast
(sufficient conditions for a):

1) Y a,— o (2) ) (@)% <

» The NE can be considered as a global optimum or a saddle point in each stage game of the stochastic game
» (Important qualification) Can only be one of global optimum or saddle point (cannot alternate)
» Extremely rare to hold in practice
» Convergence observed even when the condition is violated

» Guarantees unique convergence point in utilities and hence unique Nash Q function
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Exploration vs Exploitation Tradeoff

= In practice, same as JAL, Minimax Q-learning and Q-learning
= ¢-greedy
= Play random action with probability e
= Play max action based on fictitious belief with probability 1 — €
(Or)
= Play equilibrium action with probability 1 — €
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Alternative approaches

= A NE is not always the best solution

NE is attractive because it is unrestrictive (all agents can be independent) and Nash
theorem guarantees existence

Can consider other equilibria as well:
= Pareto-optimality
= Regret
= Correlated equilibrium
= Dominant strategy equilibrium

Function approximation techniques

Model-based techniques
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Summary

Multi-agent Reinforcement Learning (MARL)

Stochastic Games

Opponent Modelling
= Fictitious Play
= Solving (Unique) Equilibrium

Cooperative Stochastic Games
= Joint Q learning
= Convergence properties

Competitive Stochastic Games (Zero-sum games)
= Min-max Q learning
= Convergence properties

Mixed Cooperative-Competitive Stochastic Games (General-sum games)
= Nash Q learning
= Convergence properties
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