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Outline
▪ Multi-agent Reinforcement Learning (MARL)  
▪ Stochastic Games  
▪ Opponent Modelling  

▪ Fictitious Play  
▪ Solving (Unique) Equilibrium  

▪ Cooperative Stochastic Games  
▪ Joint Q learning  
▪ Convergence properties  

▪ Competitive Stochastic Games (Zero-sum games)  
▪ Minimax Q learning  
▪ Convergence properties  

▪ Mixed Cooperative-Competitive Stochastic Games (General-sum games) 
▪ Nash Q learning  
▪ Convergence properties 
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Multi-agent Reinforcement Learning 

3

Multi-agent Games + Sequential decision making

Newer field with unique challenges and opportunities
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Stochastic Games 
▪ (Simultaneously moving) Stochastic Game ( -agent MDP)  

▪ Tuple  
▪ : Number of agents  
▪ : Shared state space   
▪ : Action space of agent  

 
▪ : Reward function for agent  -  
▪ : Transition function -  
▪ : Discount factor:  

▪ Discounted:                 Undiscounted:  
▪ Horizon (i.e., # of time steps): h 

▪ Finite horizon:          Infinite horizon:  
▪ Policy (strategy) for agent  -  

▪ Goal: Find optimal policy such that , where 

 , where  and  

N
⟨N, S, A1, …, AN, R1, …, RN, T, γ⟩

N
S s ∈ S
Aj j

⟨a1, a2, …, aN⟩ ∈ A1 × A2 × … × AN

Rj j Rj(s, a1, …, aN) = Pr(r j |s, a1, …, aN)
T Pr(s′ |s, a1, …, aN)
γ 0 ≤ γ ≤ 1

γ < 1 γ = 1

h ∈ ℕ h = ∞
i πi : S Ω(Ai)

π* = {π*1 , …, π*N}

π*i = arg max
π i

h

∑
t=0

γ t*π[ri
t(s, a)] a ≜ {a1, …, aN} π ≜ {π1, …, πN}
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Playing a stochastic game
▪ Players choose their actions at the same time  

▪ No communication with other agents  
▪ No observation of other player’s actions 

▪ Each player chooses a strategy  which is a mapping from states to actions and can be either 
▪ Mixed strategy: Distribution over actions for at least one state 
▪ Pure strategy: One action with prob  for all states 

▪ At each state, all agents face a stage game (normal form game) with the Q values of the current 
state and joint action of each player being the utility for that player 

▪ The stochastic game can be thought of as a repeated normal form game with a state representation

πi

100 %
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Optimal Policy 
▪ In MARL, the optimal policy should correspond to some equilibrium of the stochastic game  

▪ The most common solution concept is the Nash equilibrium  

▪ Let us define a value function for the multi-agent setting 

                    

▪ Nash equilibrium under the stochastic game satisfies  
 

v j
π(s) ≜

∞

∑
t=0

γt*π[r j
t |so = s, π]

v j
(π j

*,π−j
* )

(s) ≥ v j
(π j,π−j

* )
(s)

∀s ∈ S; ∀j; ∀π j ≠ π j
*
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Independent learning
▪ Naive approach: Apply the single agent Q-learning directly  
▪ Each agent would update its Q-values using the Bellman update:  

 

▪ Each agent assumes that the other agent(s) are part of the environment 

▪ Merit: Simple approach, easy to apply  
▪ Demerit: Might not work well against opponents playing complex strategies 
▪ Demerit: Non-stationary transition and reward models  
▪ Demerit: No convergence guarantees 

Qj(s, aj) Qj(s, aj) + α(r j + γ max
a′ j

Qj(s′ , a′ j) − Qj(s, aj))
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Cooperative Stochastic Games 
▪ (Simultaneously moving) Stochastic Game ( -agent MDP)  

▪ Tuple  
▪ : Number of agents  
▪ : Shared state space   
▪ : Action space of agent  

 
▪ : Reward function for agent  -  
▪ : Transition function -  
▪ : Discount factor:  

▪ Discounted:                 Undiscounted:  
▪ Horizon (i.e., # of time steps): h 

▪ Finite horizon:          Infinite horizon:  
▪ Policy (strategy) for agent  -  

▪ Goal: Find optimal policy such that , where 

 , where  and  

N
⟨N, S, A1, …, AN, R1, …, RN, T, γ⟩

N
S s ∈ S
Aj j

⟨a1, a2, …, aN⟩ ∈ A1 × A2 × … × AN

Rj j R(s, a1, …, aN) = Pr(r |s, a1, …, aN), ∀j
T Pr(s′ |s, a1, …, aN)
γ 0 ≤ γ ≤ 1

γ < 1 γ = 1

h ∈ ℕ h = ∞
i πi : S Ω(Ai)

π* = {π*1 , …, π*N}

π*i = arg max
π i

h

∑
t=0

γ t*π[ri
t(s, a)] a ≜ {a1, …, aN} π ≜ {π1, …, πN}
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Optimal Policy 
• The equilibrium in the case of cooperative stochastic games is the Pareto 

dominating (Nash) equilibrium 
• Each stage game of this stochastic game faces a coordination game 
• There exists a unique Pareto dominating (Nash) equilibrium in utilities 
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Opponent Modelling 
▪ Note that an agent’s response requires knowledge of other agent’s actions  
▪ This is a simultaneously move game where each agent does not know what the other agents 

will do  
▪ So each agent should maintain a belief over other agents actions at current state  
▪ This process of maintaining and updating a belief over the next actions of other agents is called 

opponent modelling  

▪ Types of Opponent Modelling:  
▪ Fictitious Play  
▪ Gradient Based Methods  
▪ Solving Unique Equilibrium (for each stage game)  
▪ Bayesian Approaches

10
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Fictitious Play 
▪ Each agent assumes that all opponents are playing a stationary mixed strategy 
▪ Agents maintain a count of number of times another agent performs an action  

,  
▪ Agents update and sample an action from their belief about this strategy at each state 

according to 

 

▪ The fictitious action  is sampled from an empirical distribution of past actions of other 
agent (mixed strategy) 

▪ Agents calculate best responses according to this belief 

ni
t(s, aj) 1 + ni

t−1(s, aj) ∀j, ∀i

μi
t(s, aj) ∼

ni
t(s, aj)

∑a′ j
nit(s, a′ j)

μi
t(s, aj)
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Learning in cooperative stochastic games
▪ Algorithm: Joint action learner (JAL) or Joint Q learning (JQL) 
▪ Challenge: Respond to environment as well as opponent(s)  
▪ Same as Q learning but agents also include the opponent action in Q-updates  
▪ Each agent would update its Q-values using the Bellman update: 

 

▪ Need to balance exploration exploitation tradeoff  
▪ Objective for agent: Find the optimal policy for best response 
▪ Objective for system: Find the NE of the stochastic game  (or Nash Q function for the game) 

▪ Nash Q function: Agent’s immediate reward and discounted future rewards when all agents follow the NE 
policy  

Qj(s, aj, a−j) Qj(s, aj, a−j) + α(r j + γ max
a′ j

Q j(s′ , a′ j, a′ −j) − Qj(s, aj, a−j))

Qi
*(s, a) = ri(s, a) + γ∑

s′ ∈S
P(s′ |s, a)vi(s′ , π1

* , …, πn
*)
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Joint Q learning 
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JointQlearning( ) 
    Repeat 
       Repeat for each agent  
         Select and execute  
         Observe ,  and , where  
         Update counts:  
         Update counts: ,  

         Learning rate:  

         Update Q-value:  
 

         
      Until convergence of  

s, Q

i
ai

s′ ri a−i a−i = {a1, …, ai−1, ai+1, …, aN}
n(s, a) n(s, a) + 1

ni
t(s, aj) 1 + ni

t−1(s, aj) ∀j

α
1

n(s, a)

Qi(s, ai, a−i) Qi(s, ai, a−i) + α(ri + γ max
a′ i

Qi(s′ , a′ i, μi(s′ , a1), …, μi(s′ , aN)) − Qi(s, ai, a−i))
s s′ 

Qi
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Convergence of joint Q learning 
▪ If the games is finite (finite agents and finite number of strategies for each agent), then fictitious 

play will converge to true response of opponent(s) in the time limit in self-play 
▪ Self-play: All agents learn using the same algorithm  
▪ Joint Q-learning converges to Nash Q-values in a cooperative stochastic game if 

▪ Every state is visited infinitely often (due to exploration) 

▪ The learning rate  is decreased fast enough, but not too fast  
(sufficient conditions for ):   

            (1)           (2) 

▪ In cooperative stochastic games, the Nash Q-values are unique (guaranteed unique equilibrium point in 
utilities) 

α
α

∑
n

αn ∞ ∑
n

(αn)2 < ∞
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Joint Q learning 
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JointQlearning( ) 
    Repeat 
       Repeat for each agent  
         Select and execute  
         Observe ,  and , where  
         Update counts:  
         Update counts: ,  

         Learning rate:  

         Update Q-value:  
 

         
      Until convergence of  

s, Q

i
ai

s′ ri a−i a−i = {a1, …, ai−1, ai+1, …, aN}
n(s, a) n(s, a) + 1

ni
t(s, aj) 1 + ni

t−1(s, aj) ∀j

α
1

n(s, a)

Qi(s, ai, a−i) Qi(s, ai, a−i) + α(ri + γ max
a′ i

Qi(s′ , a′ i, μi(s′ , a1), …, μi(s′ , aN)) − Qi(s, ai, a−i))
s s′ 

Qi
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Common exploration methods
▪ -greedy: 

▪ With probability , execute random action 

▪ Otherwise execute best action  

▪ Boltzmann exploration 
▪ Increasing temperature  T increases stochasticity 

▪

ϵ
ϵ

a*i = arg max
ai

Qi(s, ai, μi(s, a1), …, μi(s, aN))

Pr(a) = e
Qi(s, ai, μi(s, a1), …, μi(s, aN ))

T

∑a e
Qi(s, ai, μi(s, a1), …, μi(s, aN ))

T
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Competitive Stochastic Games 
▪ (Simultaneously moving) Stochastic Game ( -agent MDP)  

▪ Tuple  
▪ : Number of agents  
▪ : Shared state space   
▪ : Action space of agent  

 
▪ : Reward function for agent  -  

▪ Condition on Reward function: ,  
▪ : Transition function -  
▪ : Discount factor:  

▪ Discounted:                 Undiscounted:  
▪ Horizon (i.e., # of time steps): h 

▪ Finite horizon:          Infinite horizon:  
▪ Policy (strategy) for agent  -  

▪ Goal: Find optimal policy such that , where 

 , where  and  

N
⟨N, S, A1, A2, R1, R2, T, γ⟩

N
S s ∈ S
Aj j

⟨a1, a2⟩ ∈ A1 × A2

Rj j Rj(s, a1, a2) = Pr(r j
t |st, a1

t , a2
t ), ∀j

r1
t + r2

t = 0 ∀t
T Pr(s′ |s, a1, a2)
γ 0 ≤ γ ≤ 1

γ < 1 γ = 1

h ∈ ℕ h = ∞
i π i : S Ω(Ai)

π* = {π*1 , …, π*N}

π*i = arg max
π i

h

∑
t=0

γ t*π[ri
t(s, a)] a ≜ {a1, a2} π ≜ {π1, π2}
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Optimal Policy 
• The equilibrium in the case of competitive stochastic games is the min-max Nash 

equilibrium  
• Each stage game of this stochastic game faces a zero-sum game 
• There exists a unique min-max (Nash) equilibrium in utilities 
• Optimal min-max value function  

 

• For a competitive stochastic game there exists a unique min-max value function 
and hence a unique min-max Q-function 

Vj
*(s) = max

aj
min
a−j

[r j(s, aj, a−j) + γ∑
s′ 

Pr(s′ |s, aj, a−j)Vj
*(s′ )]
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Learning in competitive stochastic games
▪ Algorithm: Minimax Q-Learning 
▪ Q-values for each agent  are over joint actions:  

▪  = state  
▪  = action  
▪  = opponent action  

▪ Instead of playing the best  play min-max Q 

 

 

j Qj(s, aj, a−j)
s
aj

a−j

Qj(s, aj, a−j)

Qj(s, aj, a−j) (1 − α)Qj(s, aj, a−j) + α(r j + γVj(s′ ))

Vj(s′ ) max
aj

min
a−j

Qj(s′ , aj, a−j)
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Minimax Q learning 

20

Minimax Qlearning( ) 
    Repeat 

Repeat for each agent  
        Select and execute action  
        Observe ,  and  
        Update counts:  
        Learning rate:  

        Update Q-value:  
 

         
Until convergence of      

Return 

s, a, Q*

aj

s′ a−j r
n(s, a) n(s, a) + 1

α
1

n(s, a)

Qj
*(s, aj, a−j) (1 − α)Qj

*(s, aj, a−j) + α(r j + γ max
a′ j

min
a′ −j

Qj
*(s′ , a′ j, a′ −j)))

s s′ 

Q*
Q*
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Opponent Modelling 
▪ In a competitive game rational agents always take a min-max action  

▪ There is no requirement for a separate opponent modelling strategy in self-play 

▪ However:  
▪ Other agents could use different algorithms  
▪ Computing the min-max action can be time consuming  

▪ Alternative: Fictitious play  
▪ Theorem: Fictitious play also converges in competitive zero-sum games 
▪ Theorem: Fictitious play converges to the min-max action in self-play 

21
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Convergence of Minimax Q learning 
▪ Convergence in self-play 
▪ Minimax Q-learning converges to min-max equilibrium in a competitive stochastic game 

if: 
▪ Every state is visited infinitely often (due to exploration) 

▪ The learning rate  is decreased fast enough, but not too fast  
(sufficient conditions for ):   

            (1)           (2) 

▪ In a competitive stochastic games, the Nash Q-values are unique (guaranteed unique min-max 
equilibrium point in utilities) 

α
α

∑
n

αn ∞ ∑
n

(αn)2 < ∞
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Exploration vs Exploitation Tradeoff 
▪ Same as Q-learning and Joint Q learning  
▪ -greedy  

▪ Play random action with probability  
▪ Play min-max action with probability  

       (or) 
▪ Play max action based on fictitious belief 

ϵ
ϵ
1 − ϵ
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(Mixed) Stochastic Games/ General-sum Stochastic Game 
▪ (Simultaneously moving) Stochastic Game ( -agent MDP)  

▪ Tuple  
▪ : Number of agents  
▪ : Shared state space   
▪ : Action space of agent  

 
▪ : Reward function for agent  -  
▪ Rewards of all agents can be related arbitrarily 
▪ : Transition function -  
▪ : Discount factor:  

▪ Discounted:                 Undiscounted:  
▪ Horizon (i.e., # of time steps): h 

▪ Finite horizon:          Infinite horizon:  
▪ Policy (strategy) for agent  -  

▪ Goal: Find optimal policy such that , where 

 , where  and  

N
⟨N, S, A1, …, AN, R1, …, RN, T, γ⟩

N
S s ∈ S
Aj j

⟨a1, a2, …, aN⟩ ∈ A1 × A2 × … × AN

Rj j Rj(s, a1, …, aN) = Pr(r j |s, a1, …, aN)

T Pr(s′ |s, a1, …, aN)
γ 0 ≤ γ ≤ 1

γ < 1 γ = 1

h ∈ ℕ h = ∞
i π i : S Ω(Ai)

π* = {π*1 , …, π*N}

π*i = arg max
π i

h

∑
t=0

γ t*π[ri
t(s, a)] a ≜ {a1, …, aN} π ≜ {π1, …, π N}
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Optimal Policy 
• The equilibrium in the case of competitive stochastic games is the (mixed strategy) 

Nash equilibrium for the stochastic game 
• Nash theorem guarantees at-least one mixed strategy NE exists 
• There could be multiple Nash equilibria 
▪ Objective for agent: Find the optimal policy for best response 
▪ Objective for system: Find the NE of the stochastic game  (or Nash Q function for the 

game) 
▪ Nash Q function: Agent’s immediate reward and discounted future rewards when all 

agents follow the NE policy  
 

▪ Problem: Which NE should we converge to?  

Qi
*(s, a) = ri(s, a) + γ ∑

s′ ∈2
P(s′ |s, a)vi(s′ , π1

* , …, πn
*)
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Learning in General-sum stochastic games
▪ Algorithm: Nash Q-learning 
▪ Assumption: Self-play 
▪ Every agent maintains the Q values of all other agents  
▪ At each state, every agent face a stage (normal form) game  
▪ Utilities of the normal form game are the Q values for each action for each agent 
▪ Need to calculate NE of the normal form game  
▪ Each agent would update its Q-values using the Bellman update: 

 

where 
  

▪ Here,  is a vector containing distribution of probability of each action (mixed strategy) 
▪ Here,  is a vector containing Q values for all actions of the agent 

π1(s′ )⋯πn(s′ )

Qj(s, aj, a−j) Qj(s, aj, a−j) + α(r j + γNashQj(s′ )))
NashQj(s′ ) = π1(s′ )⋯πn(s′ ) ⋅ Qj(s′ )

π j(s′ )
Qj(s′ ) j

26



CS486/686 Spring 2023 - Lecture 23 - Sriram Ganapathi Subramanian

Nash Q learning 

27

NashQ learning( ) 
    Repeat 

Repeat for each agent  
        Select and execute action  
        Observe ,  and  
        Update counts:  
        Learning rate:  

        Update Q-value for every :  
 

         
Until convergence of      

Return 

s, a, Q*

aj

s′ a−j r ≜ r1, …, rN

n(s, a) n(s, a) + 1
α

1
n(s, a)

j = 1,…, n
Qj

*(s, a) (1 − α)Qj
*(s, a) + α(r j + γNashQj

*(s′ ))
s s′ 

Q*
Q*
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Opponent Modelling 
▪ Note: Each agent is maintaining Q-values of all agents  
▪ Solution 1: Agents can take equilibrium action if unique  

▪ Problem: Non-unique equilibria in practice  
▪ Problem: Equilibrium computation can take a long time  
▪ Problem: Convergence only under strong assumptions (unique equilibrium) 

▪ Solution 2: Fictitious play  
▪ Problem:Convergence only under strong assumptions (unique equilibrium) 

▪ Solution 3: Assume every agent is playing independent learning  
▪ Problem: No convergence guarantees 
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Convergence of Nash Q-learning
▪ Convergence in self-play (under strong assumptions) 
▪ Nash Q-learning converges to the NE in a general sum stochastic game if 

▪ Every state is visited infinitely often (due to exploration) 

▪ The learning rate  is decreased fast enough, but not too fast  
(sufficient conditions for ):   

            (1)           (2) 

▪ The NE can be considered as a global optimum or a saddle point in each stage game of the stochastic game
▪ (Important qualification) Can only be one of global optimum or saddle point (cannot alternate) 
▪ Extremely rare to hold in practice 
▪ Convergence observed even when the condition is violated 
▪ Guarantees unique convergence point in utilities and hence unique Nash Q function 

α
α

∑
n

αn ∞ ∑
n

(αn)2 < ∞
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Exploration vs Exploitation Tradeoff 
▪ In practice, same as JAL, Minimax Q-learning and Q-learning  
▪ -greedy  

▪ Play random action with probability  
▪ Play max action based on fictitious belief with probability  

       (Or) 
▪ Play equilibrium action with probability  

     

ϵ
ϵ

1 − ϵ

1 − ϵ
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Alternative approaches 
▪ A NE is not always the best solution  
▪ NE is attractive because it is unrestrictive (all agents can be independent) and Nash 

theorem guarantees existence 
▪ Can consider other equilibria as well:  

▪ Pareto-optimality  
▪ Regret  
▪ Correlated equilibrium  
▪ Dominant strategy equilibrium  

▪ Function approximation techniques  
▪ Model-based techniques 
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Summary 
▪ Multi-agent Reinforcement Learning (MARL)  
▪ Stochastic Games  
▪ Opponent Modelling  

▪ Fictitious Play  
▪ Solving (Unique) Equilibrium  

▪ Cooperative Stochastic Games  
▪ Joint Q learning  
▪ Convergence properties  

▪ Competitive Stochastic Games (Zero-sum games)  
▪ Min-max Q learning  
▪ Convergence properties  

▪ Mixed Cooperative-Competitive Stochastic Games (General-sum games) 
▪ Nash Q learning  
▪ Convergence properties 
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