Lecture22:Game Theory II CS486/686 Intro to Artificial Intelligence

```
2023-7-25
```

Acknowledgements: Kate Larson, Alice Gao

Sriram Ganapathi Subramanian, Vector Institute

Outline

- Game Theory
- Normal form game
- Pareto Optimality
- Mixed strategy Nash equilibrium

Consider the previous game

- Both (B,B) and (S,S) and Nash equilibria
- However, (B,B) is better than (S,S)
- Nash equilibria does not capture this (which is better?)
- Formalize that (B, B) is better

Bob

		Bob	
		Baseball	Soccer
	Baseball	2,2	0,0
Alice			
	Soccer	0,0	1,1

Pareto dominance

Pareto dominance:
An outcome o Pareto dominates another outcome o^{\prime} if and only if every player is weakly better off in o and at least one player is strictly better off in o

$$
\begin{aligned}
& u_{i}(o) \geq u_{i}\left(o^{\prime}\right), \forall i \\
& u_{i}(o)>u_{i}\left(o^{\prime}\right), \exists i
\end{aligned}
$$

Pareto Optimality

- An outcome o is Pareto optimal if and only if no other outcome o^{\prime} Pareto dominates o
- Two statements:
- Outcome-Paretodominates all-other outcomes
- An outcome o is NOT Pareto dominated by any other outcome

Which are Pareto Optimal?

		Bob	
		One	Two
	One	2,2	0,0
Alice			
	Two	0,0	1,1

Prisoner's dilemma

- Alice and Bob caught by the police

Bob
Cooperate Defect

- If one testifies, the other gets caught

Alice

Defect
0,-3
-2,-2

- If both testifies, both will be convicted of major charge
- If neither testifies, both will be convicted of a minor charge

Which is the dominant strategy equilibrium?

Bob

		Cooperate	Defect
	Cooperate	$-1,-1$	$-3,0$
Alice			
	Defect	$0,-3$	$-2,-2$

Which are pure-strategy Nash equilibria

		Bob	
		Cooperate	Defect
	Cooperate	$-1,-1$	$-3,0$
Alice			
	Defect	$0,-3$	$-2,-2$

Which are Pareto optimal?

		Bob	
		Cooperate	Defect
		Cooperate	$-1,-1$
Alice			$-3,0$

Another example - Matching quarters

- Alice and Bob show one side of a quarter
- Alice wants the two sides to match

Heads

Alice

- Bob wants the sides to NOT match

How many pure strategy Nash equilibria

Bob

		Heads
		Tails
Heads	1,0	0,1

Mixed-strategy NE

- Best Response in mixed strategies

$$
\mathbb{E}\left[u_{i}\left(\sigma_{i}, \sigma_{-i}\right)\right] \geq \mathbb{E}\left[u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right)\right], \forall \sigma_{i}^{\prime} \neq \sigma_{i}
$$

- Mixed-strategy NE (same definition): A (mixed) strategy profile σ is a Nash equilibrium (NE) if and only if each agent i 's (mixed) strategy σ_{i} is a best response to the other agents' (mixed) strategies σ_{-i}

Nash Theorem

Every finite game has at least one (mixed) strategy Nash Equilibrium

Mixed strategy Eq. Of Matching Quarters

- Let Alice plays head with probability p and Bob plays head with probability q
- Alice chooses a value for p such that Bob is indifferent between their actions

$$
\begin{aligned}
& u_{\text {Bob }}(\text { heads })=p \times 0+(1-p)=1-p \\
& u_{\text {Bob }}(\text { tails })=p \times 1+(1-p) \times 0=p \Longrightarrow 1-p=p \Longrightarrow p=0.5
\end{aligned}
$$

- Bob chooses a value for q such that Alice is indifferent between their actions

$$
\begin{aligned}
& u_{\text {Alice }}(\text { heads })=q \times 1+(1-q) \times 0=q \\
& u_{\text {Alice }}(\text { tails })=q \times 0+(1-q) \times 1=1-q \Longrightarrow 1-q=q \Longrightarrow q=0.5
\end{aligned}
$$

- Strategy profile under mixed strategy NE:
- Alice plays heads with prob 0.5 and tails with prob 0.5
- Bob plays heads with prob 0.5 and tails with prob 0.5
- Strategy profile: $\{(0.5,0.5),(0.5,0.5)\}$
- Expected utilities under mixed strategy NE:
- Bob: 0.5
- Alice: 0.5

Mixed Strategy NE for the example

When Mixed strategy NE

Three possibilities:

- Player's expected utility of playing head is greater than that of tails
- Player's expected utility of playing head is less than that of tails
- Player's expected utility of playing heads is same as that of playing tails

Mixed strategy NE

- Two things for each player
- Each player chooses mixing probability
- Make others indifferent between actions
- Once indifferent they can choose actions with any mixing probability
- But the other should be indifferent as well

Another example - Dancing or concert?

- Alice and Bob sign up for an activity together
- They both prefer to play the same activity

Dancing
Alice

- Alice prefers dancing over concert

Concert
Bob
Dancing
Concert over concert

- Bob prefers concert over dancing

Dancing or Concert, Mixed Strategy NE

Calculation

- Suppose that Alice goes dancing with probability p and Bob goes dancing with probability q
- Bob is indifferent between the two actions
- $u_{\text {Bob }}($ dancing $)=p \times 1+(1-p) \times 0=p$
- $u_{\text {Bob }}($ Concert $)=p \times 0+(1-p) \times 2=2-2 p \Longrightarrow p=2-2 p \Longrightarrow p=2 / 3$
- Alice is indifferent between the two actions
- $u_{\text {Alice }}($ dancing $)=q \times 2+(1-q) \times 0=2 q$
- $u_{\text {Alice }}($ concert $)=q \times 0+(1-q) \times 1=1-q \Longrightarrow q=1 / 3$

Summary

- Normal Form Games
- Pareto Optimality
- Mixed strategy Nash Equilibrium

