Lecture21:Game Theory CS486/686 Intro to Artificial Intelligence

2023-7-20

Acknowledgements: Kate Larson, Alice Gao

Sriram Ganapathi Subramanian, Vector Institute

Outline

- Game Theory
- Normal form game
 - Dominant strategy equilibria
 - Pure strategy Nash equilibria

Multi-agent Decision Making

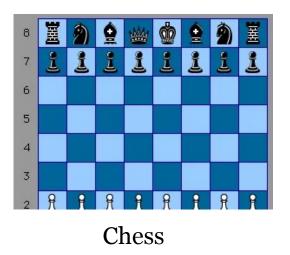
- Sequential Decision Making
 - Markov Decision Processes
 - Reinforcement Learning
 - Multi-Armed Bandits
- All in single agent environments
- Real world environments: Mostly more than one agent?
 - Each agent needs to account for other agents' actions/behaviours

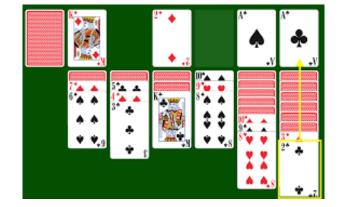
Game

- Game: Any set of circumstances, where outcomes depend on actions of two or more rational and self-interested players
 - Players (Decision Makers)
 - Agent within the game (observe state and take actions)
 - Rational
 - Agents choose their best actions (unless exploring)
 - Self-interested
 - Only care about their own benefits
 - May/May not harm others
 - Own description of states (actions based on this description)

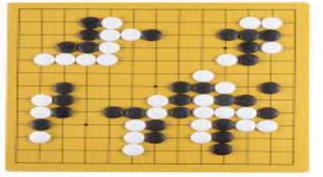
Which of these are games?

Atari

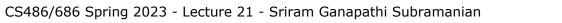




Solitaire



Go



Game Theory

- Game Theory: Mathematical model of strategic interactions among more than one rational agents in a game
 - Interaction:
 - One agent directly affects other agent(s)
 - Utility for one agent depends on other agent(s)
 - Strategic:
 - Agents maximize their utility by taking into account their influence (through actions) on the game
 - Multiple:
 - At-least two agents
 - If only one player, then it is a decision problem (not game!)

Game Theory Applications

- Auctions
- Diplomacy
- Sports analytics
- Autonomous Driving
- Sustainability (Disaster response, Wildfire fighting)

Learning in multi-agent frameworks

- Each agent decides to act based on
 - Information about the world
 - Information about other agents
 - Utility function
- Outcome of each agent depends on action of all agents

Based on utility function

- Games can be
 - Cooperative where agents have a common goal
 - Competitive where agents have conflicting goals
 - Mixed somewhere in between

Competitive

Normal Form Games

Set of agents

I = 1, 2, ..., N, where $N \ge 2$

• Set of actions for each agent

 $A_i = \{a_i^1, ..., a_i^m\}$

Outcome of game is defined by a profile (joint action)

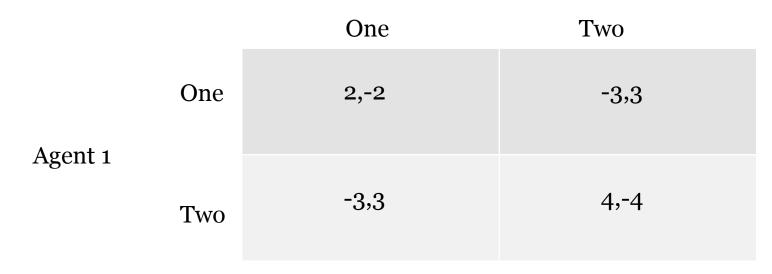
$$\boldsymbol{a} = (a_1, \dots, a_n)$$

- Total space of joint actions
 - $a \in \{A_1 \times A_2 \times \cdots \times A_N\}$
- Agents have preferences over outcomes
 - Utility functions $u_i : A \to \Re$, where $A = \{A_1 \times A_2 \times \cdots \times A_N\}$

Payoff Matrices

- Normal form games are represented by payoff matrices
- Elements
 - $I = \{1, 2\}$
 - $A_i = \{One, Two\}$
 - Outcomes: (*One*, *One*); (*Two*, *Two*); (*One*, *Two*); (*Two*, *One*)
 - $u_1(One, Two) = -3$
 - $u_2(One, Two) = 3$

Agent 2



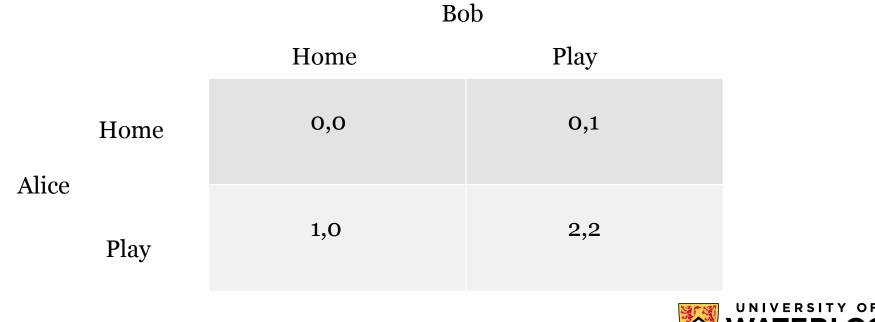
Zero - sum game:

 $\sum u_i(a_1, \dots, a_n) = 0$ i=1

CS486/686 Spring 2023 - Lecture 21 - Sriram Ganapathi Subramanian

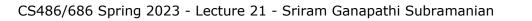
Another example

- Alice and Bob like playing together
- Decide to play or stay at home
- Cannot communicate with each other
- Both prefer playing to staying at home



Playing a Normal-Form Game

- Players choose their actions at the same time
 - No communication with other agents
 - No observation of other player's actions
- Each player chooses a strategy σ_i which can be either
 - Mixed strategy: Distribution over actions
 - Eg: Stay at home with prob $80\,\%\,$ and go to play with prob $20\,\%\,$
 - Pure strategy: One action with prob $100\,\%$
- Solution for normal form game is a strategy profile, a set of strategies with one strategy for each player
 - Strategy profile: $\{\sigma_{Alice}, \sigma_{Bob}\}$



Solution for example?

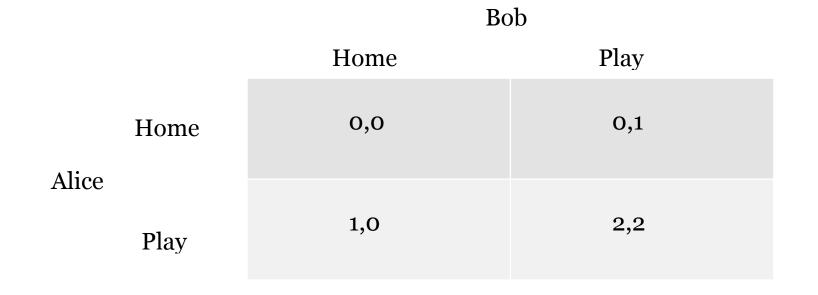
Terminologies

- Terminologies for strategies:
 - *σ_i*: Strategy of player *i*
 - σ_{-i} : Strategy of all players except *i*
- Terminologies for utilities:
 - $u_i(\sigma) = u_i(\sigma_i, \sigma_{-i})$ denotes the utility of agent *i* under strategy profile σ

Dominant Strategy Equilibrium

- For player *i*, a strategy σ_i dominates strategy σ'_i if
 - $u_i(\sigma_i, \sigma_{-i}) \ge u_i(\sigma'_i, \sigma_{-i}), \forall \sigma_{-i}, \text{ and }$
 - $u_i(\sigma_i, \sigma_{-i}) > u_i(\sigma'_i, \sigma_{-i}), \ \exists \sigma_{-i}$
- A dominant strategy dominates all other strategies
- A rational agent will never play a dominated strategy
- Each player may or may not have dominant strategy
- When each player has a dominant strategy, the set of those strategies (strategy profile) is a dominant strategy equilibrium (DSE)
 - DSE: $\{\sigma_1, ..., \sigma_N\}$ if σ_i , for all *i*, is a dominant strategy
- A game that has at least one DSE is dominance solvable

Does this have a DSE?



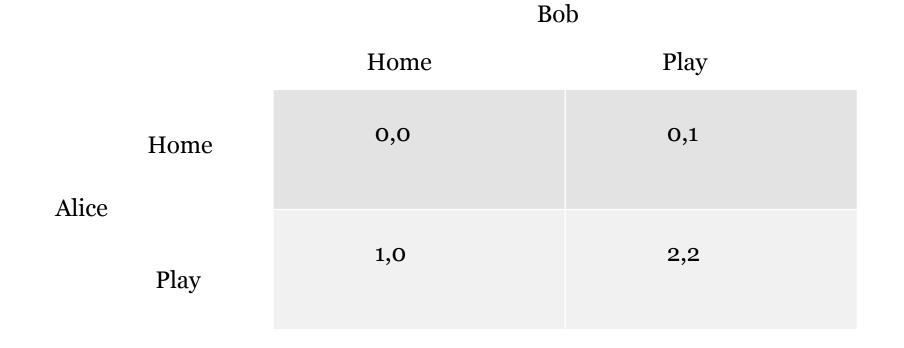
Does this have a DSE?

- Let's solve for Alice:
 - If Bob stays at home:
 - $u_{Alice}(Play, Home) > u_{Alice}(Home, Home)$
 - If Bob goes to play:

 $u_{Alice}(Play, Play) > u_{Alice}(Home, Play)$

- In both cases Alice prefers to Play, therefore Play is a dominant strategy for Alice
- As the game is symmetric, Play is a dominant strategy for Bob too
- Thus, {Play, Play} is a DSE

Example

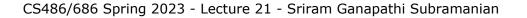


Adding another action

Bob

		Home	Play	Dance
Alice	Home	0,0	0,1	5,-10
	Play	1,0	2,2	2,-10
	Dance	-10,5	-10, 2	-10,-10

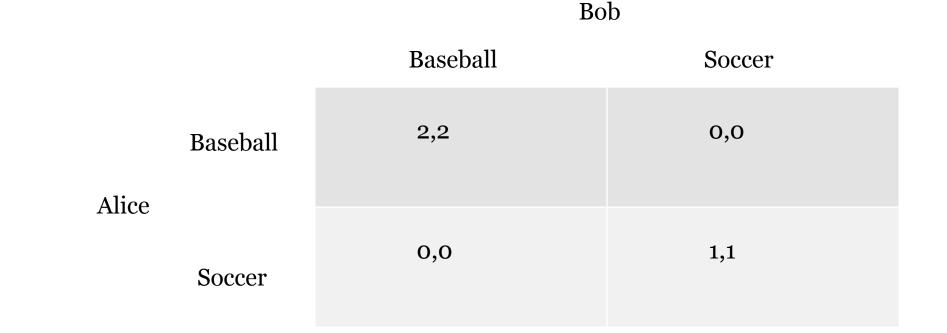
• Is there a dominant strategy equilibrium for this game?



Iterative elimination of dominated strategies

- If Alice knows that Bob is rational, then Alice will eliminate the Bob's 'Dance' strategy
- Likewise for Bob
- After two rounds of elimination of strictly dominated strategies we are back to the previous game
- The previous game had one DSE {Play, Play}
- That is the DSE for this game as well

Another example



- Is there a dominant strategy equilibrium for this game?
- What are the players likely to do?

Best Response

Given a strategy profile {σ_i, σ_{-i}}, agent *i*'s strategy σ_i is a best response to the other agents' strategies σ_{-i} if and only if

$$u_i(\sigma_i, \sigma_{-i}) \ge u_i(\sigma'_i, \sigma_{-i}), \forall \sigma'_i \neq \sigma_i$$

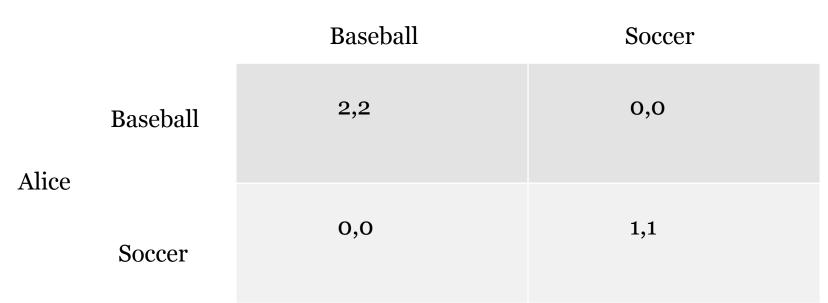
• A rational agent will always play a best response

Nash Equilibrium

- A strategy profile σ is a Nash equilibrium (NE) if and only if each agent *i*'s strategy σ_i is a best response to the other agents' strategies σ_{-i}
 - Mixed strategy NE: At-least one σ_i is a distribution over actions
 - Pure strategy: Every σ_i chooses one action with 100% probability
- (Alternative Definition): No agent has any incentive to deviate from their current strategy σ_i if the strategy profile σ is a Nash equilibrium

Nash Equilibrium for the example

Is there a pure strategy Nash equilibrium for this example?



Bob

Solving for Nash equilibrium - I

- Follow the chain of best responses until we reach a stable point
- If some player is not playing a best response then we can switch the strategy to another strategy that is best response
- Keep repeating it until all players are playing the best response
- Pick an arbitrary strategy profile {Baseball, Soccer}
 - Now Alice changes strategy to soccer
 - Bob has no incentive to change strategy, so {Soccer, Soccer} is NE
- Similarly we can show that {Baseball, Baseball} is a NE

Solving for Nash equilibrium - II

- Another Idea: Fix strategy for one player and find the best response for other
- If Bob goes for Soccer, the best response for Alice is to go for Soccer
- If Bob goes for Baseball, the best response for Alice is to go for Baseball
- So we have two pure strategy NE: {Soccer, Soccer} and {Baseball, Baseball}

Summary

- Introduction to Multi-agent decision making (Game Theory)
- Normal form game (2 players)
 - Dominant strategy equilibria
 - Pure strategy Nash equilibria

