Lecture20: Multi-Armed Bandits CS486/686 Intro to Artificial Intelligence

2023-7-18

Sriram Ganapathi Subramanian, Vector Institute

Outline

- Exploration/exploitation tradeoff
- Regret
- Multi-armed bandits
 - Frequentist approaches
 - *c*-greedy strategies
 - Upper confidence bounds
 - Bayesian bandits
 - Thompson Sampling

Exploration/Exploitation Tradeoff

- Fundamental problem of RL due to the active nature of the learning process
- Consider one-state RL problems known as bandits

Stochastic Bandits

- Formal definition:
 - Single state: $S = \{s\}$
 - *A*: set of actions (also known as arms)
 - Space of rewards (often re-scaled to be [0,1])
 - Finite/Infinite horizons
 - Average reward setting ($\gamma = 1$)
- No transition function to be learned since there is a single state
- We simply need to learn the **stochastic** reward function

Origin

- The term bandit comes from gambling where slot machines can be thought as one-armed bandits.
- Problem: which slot machine should we play at each turn when their payoffs are not necessarily the same and initially unknown?

Examples

- Design of experiments (Clinical Trials)
- Online ad placement
- Web page personalization
- Recommender systems
- Networks (packet routing)

Online Ad Placement

Online Ad Optimization

- Problem: which ad should be presented?
- Answer: present ad with highest payoff

 $payoff = clickThroughRate \times payment$

- Click through rate: probability that user clicks on ad
- Payment: \$\$ paid by advertiser
 - Amount determined by an auction

Simplified Problem

- Assume payment is 1 unit for all ads
- Need to estimate click through rate
- Formulate as a bandit problem:
 - Arms: the set of possible ads
 - Rewards: 0 (no click) or 1 (click)
- In what order should ads be presented to maximize revenue?
 - How should we balance exploitation and exploration?

Simple yet Difficult Problem

- Simple: description of the problem is short
- Difficult: no known tractable optimal solution

Simple Heuristics

- Greedy strategy: select the arm with the highest average so far
 - May get stuck due to lack of exploration
- *c*-greedy: select an arm at random with probability *c* and otherwise do a greedy selection
 - Convergence rate depends on choice of ϵ

Regret

• Let *R*(*a*) be the **true (unknown) expected reward** of *a*

Let
$$r^* = \max_a R(a)$$
 and $a^* = argmax_a R(a)$

- Denote by *loss(a)* the expected regret of *a loss(a) = r* R(a)*
- Denote by *Loss_n* the expected cumulative regret for *n* time steps

$$Loss_n = \sum_{t=1}^n loss(a_t)$$

Theoretical Guarantees

- When ϵ is constant, then
 - For large enough t: $Pr(a_t \neq a^*) \approx \epsilon$

Expected cumulative regret: $Loss_n \approx \sum_{n=1}^{n} \epsilon \times 1 + (1 - \epsilon) \times 0 = \sum_{n=1}^{n} \epsilon = O(n)$

Linear regret

• When $\epsilon_{\rm t} \propto 1/t$

• For large enough t: $Pr(a_t \neq a^*) \approx \epsilon_t = O\left(\frac{1}{t}\right)$

Expected cumulative regret: $Loss_n \approx \sum_{t=1}^n \frac{1}{t} = O(\log n)$

Logarithmic regret

Empirical Mean

- Problem: how far is the empirical mean $\tilde{R}(a)$ from the true mean R(a)?
- If we knew that $|R(a) \tilde{R}(a)| \leq bound$
 - Then we would know that $R(a) \leq \tilde{R}(a) + bound$
 - And we could select the arm with best $\tilde{R}(a) + bound$
- Overtime, additional data will allow us to refine $\tilde{R}(a)$ and compute a tighter *bound*.

Positivism in the Face of Uncertainty

- Suppose that we have an oracle that returns an upper bound $UB_n(a)$ on R(a) for each arm based on *n* trials of arm *a*.
- Suppose the upper bound returned by this oracle converges to R(a) in the limit:
 - i.e., $\lim_{n \to \infty} UB_n(a) = R(a)$
- Optimistic algorithm
 - At each step, select $\arg \max UB_n(a)$

Convergence

- Theorem: An optimistic strategy that always selects $\operatorname{argmax}_{a}UB_{n}(a)$ will converge to a^{*}
- Proof by contradiction:
 - Suppose that we converge to suboptimal arm *a* after infinitely many trials.
 - Then $R(a) = UB_{\infty}(a) \ge UB_{\infty}(a') = R(a') \ \forall a'$
 - But $R(a) \ge R(a') \forall a'$ contradicts our assumption that *a* is suboptimal.

Probabilistic Upper Bound

- Problem: We can't compute an upper bound with certainty since we are sampling
- However we can obtain measures *f* that are upper bounds most of the time

• i.e.,
$$\Pr(R(a) \le f(a)) \ge 1 - \delta$$

Example: Hoeffding's inequality

$$\Pr\left(R(a) \le \widetilde{R}(a) + \sqrt{\frac{\log\left(\frac{1}{\delta}\right)}{2n_a}}\right) \ge 1 - \delta$$

where n_a is the number of trials for arm a

Upper Confidence Bound (UCB)

- Set $\delta_n = 1/n^4$ in Hoeffding's bound
- Choose *a* with highest Hoeffding bound

UCB(h) $V \leftarrow 0, n \leftarrow 0, n_a \leftarrow 0 \quad \forall a$ Repeat until n = hExecute $\operatorname{argmax}_{a} \widetilde{R}(a) + 1$ $\int 2\log n$ Receive *r* $V \leftarrow V + r$ $\widetilde{R}(a) \leftarrow \frac{n_a \widetilde{R}(a) + r}{n_a + 1}$ $n \leftarrow n + 1, \quad n_a \leftarrow n_a + 1$ Return V

UCB Convergence

- **Theorem:** Although Hoeffding's bound is probabilistic, UCB converges.
- **Idea:** As *n* increases, the term $\sqrt{\frac{2\log n}{n_a}}$ increases, ensuring that all arms are tried infinitely often
- Expected cumulative regret: $Loss_n = O(\log n)$
 - Logarithmic regret

Multi-Armed Bandits

- Problem:
 - *N* bandits with unknown average reward *R*(*a*)
 - Which arm *a* should we play at each time step?
 - Exploitation/exploration tradeoff
- Common frequentist approaches:
 - *e*-greedy
 - Upper confidence bound (UCB)
- Alternative Bayesian approaches
 - Thompson sampling
 - Gittins indices

Bayesian Learning

- Notation:
 - *r^a*: random variable for *a*'s rewards
 - $Pr(r^a; \theta)$: unknown distribution (parameterized by θ)
 - $R(a) = E[r^a]$: unknown average reward
- Idea:
 - Express uncertainty about θ by a prior $Pr(\theta)$
 - Compute posterior $Pr(\theta | r_1^a, r_2^a, ..., r_n^a)$ based on samples $r_1^a, r_2^a, ..., r_n^a$ observed for *a* so far.
- Bayes theorem:

 $\Pr\left(\theta \mid r_1^a, r_2^a, \dots, r_n^a\right) \propto \Pr(\theta) \Pr(r_1^a, r_2^a, \dots, r_n^a \mid \theta)$

Distributional Information

- Posterior over θ allows us to estimate
 - Distribution over next reward r^a

$$Pr(r_{n+1}^{a} | r_{1}^{a}, r_{2}^{a}, ..., r_{n}^{a}) = \int_{\theta} Pr(r_{n+1}^{a}; \theta) Pr(\theta | r_{1}^{a}, r_{2}^{a}, ..., r_{n}^{a}) d\theta$$

- Distribution over R(a) when θ includes the mean $\Pr(R(a) \mid r_1^a, r_2^a, ..., r_n^a) = \Pr(\theta \mid r_1^a, r_2^a, ..., r_n^a)$ if $\theta = R(a)$
- To guide exploration:
 - UCB: $\Pr(R(a) \le bound(r_1^a, r_2^a, \dots, r_n^a)) \ge 1 \delta$
 - Bayesian techniques: $\Pr(R(a) | r_1^a, r_2^a, ..., r_n^a)$

Coin Example

- Consider two biased coins C_1 and C_2 $R(C_1) = \Pr(C_1 = head)$ $R(C_2) = \Pr(C_2 = head)$
- Problem:
 - Maximize # of heads in *k* flips
 - Which coin should we choose for each flip?

Bernoulli Variables

- r^{C_1} , r^{C_2} are Bernoulli variables with domain $\{0,1\}$
- Bernoulli distributions are parameterized by their mean

• i.e.,
$$\Pr(r^{C_1}; \theta_1) = \theta_1 = R(C_1)$$

 $\Pr(r^{C_2}; \theta_2) = \theta_2 = R(C_2)$

Beta Distribution

- Let the prior $Pr(\theta)$ be a Beta distribution $Beta(\theta; \alpha, \beta) \propto \theta^{\alpha-1}(1-\theta)^{\beta-1}$
- $\alpha 1$: # of heads
- $\beta 1$: # of tails
- $E[\theta] = \alpha/(\alpha + \beta)$

Belief Update

- Prior: $Pr(\theta) = Beta(\theta; \alpha, \beta) \propto \theta^{\alpha-1}(1-\theta)^{\beta-1}$
- Posterior after coin flip:

$$\begin{split} \Pr(\theta \mid head) &\propto & \Pr(\theta) & \Pr(head \mid \theta) \\ &\propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} & \theta \\ &= \theta^{(\alpha + 1) - 1} (1 - \theta)^{\beta - 1} \propto Beta(\theta; \alpha + 1, \beta) \\ \Pr(\theta \mid tail) &\propto & \Pr(\theta) & \Pr(tail \mid \theta) \\ &\propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} & (1 - \theta) \\ &= \theta^{\alpha - 1} (1 - \theta)^{(\beta + 1) - 1} \propto Beta(\theta; \alpha, \beta + 1) \end{split}$$

Thompson Sampling

- Idea:
 - Sample several potential average rewards:

 $R_1(a), \dots R_k(a) \sim \Pr(R(a) \mid r_1^a, \dots, r_n^a)$ for each a

Estimate empirical average $\hat{R}(a) = \frac{1}{k} \sum_{i=1}^{k} R_i(a)$

- Execute $\operatorname{argmax}_{a} \stackrel{\wedge}{R}(a)$
- Coin example

Pr
$$\left(R(a) \mid r_1^a, \dots, r_n^a\right)$$
 = Beta $\left(\theta_a; \alpha_a, \beta_a\right)$
where $\alpha_a - 1 = \#heads$ and $\beta_a - 1 = \#tails$

Thompson Sampling Algorithm Bernoulli Rewards

ThompsonSampling(*h*) $V \leftarrow 0$ For n = 1 to hSample $R_1(a), \dots, R_k(a) \sim \Pr(R(a)) \quad \forall a$ $\hat{R}(a) \leftarrow \frac{1}{k} \sum_{i=1}^k R_i(a) \quad \forall a$ $a^* \leftarrow \operatorname{argmax}_a^{\kappa} \hat{R}(a)$ Execute a^* and receive r $V \leftarrow V + r$ Update $Pr(R(a^*))$ based on *r* Return V

Comparison

Thompson Sampling

- Action Selection $a^* = \operatorname{argmax}_{a} \hat{R}(a)$
- Empirical mean

$$\hat{R}(a) = \frac{1}{k} \sum_{i=1}^{k} R_i(a)$$

- Samples $R_j(a) \sim Pr(R(a) | r_1^a, ..., r_n^a)$ $r_i^a \sim Pr(r^a; \theta)$
- Some exploration

Greedy Strategy

- Action Selection $a^* = \operatorname{argmax}_a \widetilde{R}(a)$
- Empirical mean $\widetilde{R}(a) = \frac{1}{n} \sum_{i=1}^{n} r_i^a$
- Samples $r_i^a \sim \Pr(r^a; \theta)$
- No exploration

Sample Size

- In Thompson sampling, amount of data *n* and sample size *k* regulate amount of exploration
- As *n* and *k* increase, $\hat{R}(a)$ becomes less stochastic, which reduces exploration
 - As $n \uparrow$, $Pr(R(a) | r_1^a, ..., r_n^a)$ becomes more peaked
 - As $k \uparrow \hat{R}(a)$ approaches $\mathbb{E}[R(a) | r_1^a, ..., r_n^a]$
- The stochasticity of $\hat{R}(a)$ ensures that all actions are chosen with some probability

Analysis

- Thompson sampling converges to best arm
- Theory:
 - Expected cumulative regret: O(log n)
 - On par with UCB and ϵ -greedy
- Practice:
 - Sample size *k* often set to 1

Summary

- Stochastic bandits
 - Exploration/exploitation tradeoff
 - *c*-greedy and UCB
 - Theory: logarithmic expected cumulative regret
- In practice:
 - UCB often performs better than ϵ -greedy
 - Many variants of UCB improve performance
- Bayesian Bandits
 - Thompson Sampling

