Lecture20: Multi-Armed Bandits CS486/686 Intro to Artificial Intelligence

Sriram Ganapathi Subramanian, Vector Institute

Outline

- Exploration/exploitation tradeoff
- Regret
- Multi-armed bandits
- Frequentist approaches
- ϵ-greedy strategies
- Upper confidence bounds
- Bayesian bandits
- Thompson Sampling

Exploration/Exploitation Tradeoff

- Fundamental problem of RL due to the active nature of the learning process
- Consider one-state RL problems known as bandits

Stochastic Bandits

- Formal definition:
- Single state: $S=\{s\}$
- A : set of actions (also known as arms)
- Space of rewards (often re-scaled to be [0,1])
- Finite/Infinite horizons
- Average reward setting ($\gamma=1$)
- No transition function to be learned since there is a single state
- We simply need to learn the stochastic reward function

Origin

- The term bandit comes from gambling where slot machines can be thought as one-armed bandits.
- Problem: which slot machine should we play at each turn when their payoffs are not necessarily the same and initially unknown?

Examples

- Design of experiments (Clinical Trials)
- Online ad placement
- Web page personalization
- Recommender systems
- Networks (packet routing)

Online Ad Placement

Online Ad Optimization

- Problem: which ad should be presented?
- Answer: present ad with highest payoff
payoff $=$ clickThroughRate \times payment
- Click through rate: probability that user clicks on ad
- Payment: \$\$ paid by advertiser
- Amount determined by an auction

Simplified Problem

- Assume payment is 1 unit for all ads
- Need to estimate click through rate
- Formulate as a bandit problem:
- Arms: the set of possible ads
- Rewards: o (no click) or 1 (click)
- In what order should ads be presented to maximize revenue?
- How should we balance exploitation and exploration?

Simple yet Difficult Problem

- Simple: description of the problem is short
- Difficult: no known tractable optimal solution

Simple Heuristics

- Greedy strategy: select the arm with the highest average so far
- May get stuck due to lack of exploration
- ϵ-greedy: select an arm at random with probability ϵ and otherwise do a greedy selection
- Convergence rate depends on choice of ϵ

Regret

- Let $R(a)$ be the true (unknown) expected reward of a
- Let $r^{*}=\max _{a} R(a)$ and $a^{*}=\operatorname{argmax}_{a} R(a)$
- Denote by $\operatorname{loss}(a)$ the expected regret of a

$$
\operatorname{loss}(a)=r^{*}-R(a)
$$

- Denote by Loss_{n} the expected cumulative regret for n time steps

$$
\operatorname{Loss}_{n}=\sum_{t=1}^{n} \operatorname{loss}\left(a_{t}\right)
$$

Theoretical Guarantees

- When ϵ is constant, then
- For large enough $t: \operatorname{Pr}\left(a_{t} \neq a^{*}\right) \approx \epsilon$
- Expected cumulative regret: $\operatorname{Loss}_{n} \approx \sum_{t=1}^{n} \epsilon \times 1+(1-\epsilon) \times 0=\sum_{t=1}^{n} \epsilon=O(n)$
- Linear regret
- When $\epsilon_{\mathrm{t}} \propto 1 / t$
. For large enough $t: \operatorname{Pr}\left(a_{t} \neq a^{*}\right) \approx \varepsilon_{t}=O\left(\frac{1}{t}\right)$
. Expected cumulative regret: $\operatorname{Loss}_{n} \approx \sum_{t=1}^{n} \frac{1}{t}=O(\log n)$
- Logarithmic regret

Empirical Mean

- Problem: how far is the empirical mean $\tilde{R}(a)$ from the true mean $R(a)$?
- If we knew that $|R(a)-\widetilde{R}(a)| \leq$ bound
- Then we would know that $R(a) \leq \tilde{R}(a)+$ bound
- And we could select the arm with best $\tilde{R}(a)+$ bound
- Overtime, additional data will allow us to refine $\widetilde{R}(a)$ and compute a tighter bound.

Positivism in the Face of Uncertainty

- Suppose that we have an oracle that returns an upper bound $U B_{n}(a)$ on $R(a)$ for each arm based on n trials of arm a.
- Suppose the upper bound returned by this oracle converges to $R(a)$ in the limit:
. i.e., $\lim _{n \rightarrow \infty} U B_{n}(a)=R(a)$
- Optimistic algorithm
- At each step, select $\arg \max U B_{n}(a)$

Convergence

- Theorem: An optimistic strategy that always selects $\operatorname{argmax}_{\mathrm{a}} U B_{n}(a)$ will converge to a^{*}
- Proof by contradiction:
- Suppose that we converge to suboptimal arm a after infinitely many trials.
- Then $R(a)=U B_{\infty}(a) \geq U B_{\infty}\left(a^{\prime}\right)=R\left(a^{\prime}\right) \forall a^{\prime}$
- But $R(a) \geq R\left(a^{\prime}\right) \forall a^{\prime}$ contradicts our assumption that a is suboptimal.

Probabilistic Upper Bound

- Problem: We can't compute an upper bound with certainty since we are sampling
- However we can obtain measures f that are upper bounds most of the time
- i.e., $\operatorname{Pr}(R(a) \leq f(a)) \geq 1-\delta$

where n_{a} is the number of trials for arm a

Upper Confidence Bound (UCB)

- Set $\delta_{n}=1 / n^{4}$ in Hoeffding's bound
- Choose a with highest Hoeffding bound
$\mathrm{UCB}(h)$
$V \leftarrow 0, n \leftarrow 0, n_{a} \leftarrow 0 \quad \forall a$
Repeat until $n=h$
Execute $\operatorname{argmax}_{\mathrm{a}} \tilde{R}(a)+\sqrt{\frac{2 \log n}{n_{a}}}$
Receive r
$V \leftarrow V+r$
$\widetilde{R}(a) \leftarrow \frac{n_{a} \tilde{R}(a)+r}{n_{a}+1}$
$n \leftarrow n+1, \quad n_{a} \leftarrow n_{a}+1$
Return V

UCB Convergence

- Theorem: Although Hoeffding's bound is probabilistic, UCB converges.
. Idea: As n increases, the term $\sqrt{\frac{2 \log n}{n_{a}}}$ increases, ensuring that all arms are tried infinitely often
- Expected cumulative regret: $\operatorname{Loss}_{n}=O(\log n)$
- Logarithmic regret

Multi-Armed Bandits

- Problem:
- N bandits with unknown average reward $R(a)$
- Which arm a should we play at each time step?
- Exploitation/exploration tradeoff
- Common frequentist approaches:
- ϵ-greedy
- Upper confidence bound (UCB)
- Alternative Bayesian approaches
- Thompson sampling
- Gittins indices

Bayesian Learning

- Notation:
- r^{a} : random variable for a 's rewards
- $\operatorname{Pr}\left(r^{a} ; \theta\right)$: unknown distribution (parameterized by θ)
- $R(a)=E\left[r^{a}\right]$: unknown average reward
- Idea:
- Express uncertainty about θ by a prior $\operatorname{Pr}(\theta)$
- Compute posterior $\operatorname{Pr}\left(\theta \mid r_{1}^{a}, r_{2}^{a}, \ldots, r_{n}^{a}\right)$ based on samples $r_{1}^{a}, r_{2}^{a}, \ldots, r_{n}^{a}$ observed for a so far.
- Bayes theorem:
$\operatorname{Pr}\left(\theta \mid r_{1}^{a}, r_{2}^{a}, \ldots, r_{n}^{a}\right) \propto \operatorname{Pr}(\theta) \operatorname{Pr}\left(r_{1}^{a}, r_{2}^{a}, \ldots, r_{n}^{a} \mid \theta\right)$

Distributional Information

- Posterior over θ allows us to estimate
- Distribution over next reward r^{a}

$$
\operatorname{Pr}\left(r_{n+1}^{a} \mid r_{1}^{a}, r_{2}^{a}, \ldots, r_{n}^{a}\right)=\int_{\theta} \operatorname{Pr}\left(r_{n+1}^{a} ; \theta\right) \operatorname{Pr}\left(\theta \mid r_{1}^{a}, r_{2}^{a}, \ldots, r_{n}^{a}\right) d \theta
$$

- Distribution over $R(a)$ when θ includes the mean

$$
\operatorname{Pr}\left(R(a) \mid r_{1}^{a}, r_{2}^{a}, \ldots, r_{n}^{a}\right)=\operatorname{Pr}\left(\theta \mid r_{1}^{a}, r_{2}^{a}, \ldots, r_{n}^{a}\right) \text { if } \theta=R(a)
$$

- To guide exploration:
- UCB: $\operatorname{Pr}\left(R(a) \leq \operatorname{bound}\left(r_{1}^{a}, r_{2}^{a}, \ldots, r_{n}^{a}\right)\right) \geq 1-\delta$
- Bayesian techniques: $\operatorname{Pr}\left(R(a) \mid r_{1}^{a}, r_{2}^{a}, \ldots, r_{n}^{a}\right)$

Coin Example

- Consider two biased coins C_{1} and C_{2}

$$
\begin{aligned}
& R\left(C_{1}\right)=\operatorname{Pr}\left(C_{1}=\text { head }\right) \\
& R\left(C_{2}\right)=\operatorname{Pr}\left(C_{2}=\text { head }\right)
\end{aligned}
$$

- Problem:
- Maximize \# of heads in k flips
- Which coin should we choose for each flip?

Bernoulli Variables

- $r^{C_{1}}, r^{C_{2}}$ are Bernoulli variables with domain $\{0,1\}$
- Bernoulli distributions are parameterized by their mean

$$
\begin{aligned}
\text { - i.e., } \operatorname{Pr}\left(r^{C_{1}} ; \theta_{1}\right) & =\theta_{1}=R\left(C_{1}\right) \\
\operatorname{Pr}\left(r^{C_{2}} ; \theta_{2}\right) & =\theta_{2}=R\left(C_{2}\right)
\end{aligned}
$$

Beta Distribution

- Let the prior $\operatorname{Pr}(\theta)$ be a Beta distribution
$\operatorname{Beta}(\theta ; \alpha, \beta) \propto \theta^{\alpha-1}(1-\theta)^{\beta-1}$
- $\alpha-1$: \# of heads
- $\beta-1$: \# of tails
- $E[\theta]=\alpha /(\alpha+\beta)$

Belief Update

- Prior: $\operatorname{Pr}(\theta)=\operatorname{Beta}(\theta ; \alpha, \beta) \propto \theta^{\alpha-1}(1-\theta)^{\beta-1}$
- Posterior after coin flip:

$$
\begin{aligned}
\operatorname{Pr}(\theta \mid \text { head }) & \propto \operatorname{Pr}(\theta) \quad \operatorname{Pr}(\text { head } \mid \theta) \\
& \propto \theta^{\alpha-1}(1-\theta)^{\beta-1} \\
& =\theta^{(\alpha+1)-1}(1-\theta)^{\beta-1} \propto \operatorname{Beta}(\theta ; \alpha+1, \beta) \\
\operatorname{Pr}(\theta \mid \text { tail }) & \propto \operatorname{Pr}(\theta) \quad \operatorname{Pr}(\text { tail } \mid \theta) \\
& \propto \theta^{\alpha-1}(1-\theta)^{\beta-1} \\
& =\theta^{\alpha-1}(1-\theta) \\
(1-\theta+1)-1 & \operatorname{Beta}(\theta ; \alpha, \beta+1)
\end{aligned}
$$

Thompson Sampling

- Idea:
- Sample several potential average rewards:

$$
R_{1}(a), \ldots R_{k}(a) \sim \operatorname{Pr}\left(R(a) \mid r_{1}^{a}, \ldots, r_{n}^{a}\right) \text { for each } a
$$

. Estimate empirical average $\hat{R}(a)=\frac{1}{k} \sum_{i=1}^{k} R_{i}(a)$

- Execute $\operatorname{argmax}_{a} \hat{R}(a)$
- Coin example
. $\operatorname{Pr}\left(R(a) \mid r_{1}^{a}, \ldots, r_{n}^{a}\right)=\operatorname{Beta}\left(\theta_{a} ; \alpha_{a}, \beta_{a}\right)$
where $\alpha_{a}-1=\#$ heads and $\beta_{a}-1=\#$ tails

Thompson Sampling Algorithm Bernoulli Rewards

```
ThompsonSampling( \(h\) )
    \(V \leftarrow 0\)
    For \(n=1\) to \(h\)
    Sample \(R_{1}(a), \ldots, R_{k}(a) \sim \operatorname{Pr}(R(a)) \quad \forall a\)
        \(\hat{R}(a) \leftarrow \frac{1}{k} \sum_{i=1}^{k} R_{i}(a) \quad \forall a\)
    \(a^{*} \leftarrow \operatorname{argmax}_{\mathrm{a}} \hat{R}(a)\)
    Execute \(a^{*}\) and receive \(r\)
    \(V \leftarrow V+r\)
    Update \(\operatorname{Pr}\left(R\left(a^{*}\right)\right)\) based on \(r\)
Return \(V\)
```


Comparison

Thompson Sampling

- Action Selection

$$
a^{*}=\operatorname{argmax}_{\mathrm{a}} \hat{R}(a)
$$

- Empirical mean

$$
\hat{R}(a)=\frac{1}{k} \sum_{i=1}^{k} R_{i}(a)
$$

- Samples

$$
\begin{aligned}
& R_{j}(a) \sim \operatorname{Pr}\left(R(a) \mid r_{1}^{a}, \ldots, r_{n}^{a}\right) \\
& r_{i}^{a} \sim \operatorname{Pr}\left(r^{a} ; \theta\right)
\end{aligned}
$$

- Some exploration

Greedy Strategy

- Action Selection

$$
a^{*}=\operatorname{argmax}_{\mathrm{a}} \widetilde{R}(a)
$$

- Empirical mean

$$
\tilde{R}(a)=\frac{1}{n} \sum_{i=1}^{n} r_{i}^{a}
$$

- Samples

$$
r_{i}^{a} \sim \operatorname{Pr}\left(r^{a} ; \theta\right)
$$

- No exploration

Sample Size

- In Thompson sampling, amount of data n and sample size k regulate amount of exploration
- As n and k increase, $\hat{R}(a)$ becomes less stochastic, which reduces exploration
- As $n \uparrow, \operatorname{Pr}\left(R(a) \mid r_{1}^{a}, \ldots, r_{n}^{a}\right)$ becomes more peaked
- As $k \uparrow, \hat{R}(a)$ approaches $\mathbb{E}\left[R(a) \mid r_{1}^{a}, \ldots, r_{n}^{a}\right]$
- The stochasticity of $\hat{R}(a)$ ensures that all actions are chosen with some probability

Analysis

- Thompson sampling converges to best arm
- Theory:
- Expected cumulative regret: $O(\log n)$
- On par with UCB and ϵ-greedy
- Practice:
- Sample size k often set to 1

Summary

- Stochastic bandits
- Exploration/exploitation tradeoff
- ϵ-greedy and UCB
- Theory: logarithmic expected cumulative regret
- In practice:
- UCB often performs better than ϵ-greedy
- Many variants of UCB improve performance
- Bayesian Bandits
- Thompson Sampling

