Outline

- Exploration/exploitation tradeoff
- Regret
- Multi-armed bandits
 - Frequentist approaches
 - ϵ-greedy strategies
 - Upper confidence bounds
 - Bayesian bandits
 - Thompson Sampling
Exploration/Exploitation Tradeoff

- Fundamental problem of RL due to the active nature of the learning process
- Consider one-state RL problems known as bandits
Stochastic Bandits

- **Formal definition:**
 - Single state: $S = \{s\}$
 - A: set of actions (also known as arms)
 - Space of rewards (often re-scaled to be $[0,1]$)
 - Finite/Infinite horizons
 - Average reward setting ($\gamma = 1$)

- No transition function to be learned since there is a single state

- We simply need to learn the **stochastic** reward function
Origin

- The term bandit comes from gambling where slot machines can be thought as one-armed bandits.

- Problem: which slot machine should we play at each turn when their payoffs are not necessarily the same and initially unknown?
Examples

- Design of experiments (Clinical Trials)
- Online ad placement
- Web page personalization
- Recommender systems
- Networks (packet routing)
Online Ad Placement

Six Ontarians charged in alleged $200-million investment fraud

- WATCH Video: How to protect your bank account from fraud

122 'potential objects' spotted in ocean offer fresh jet lead

- WATCH Sailing the waters where Flight 370 went down

TORONTO: Chow presses Ford to ‘take down the circus tent’ as candidates hammer each other in mayoral debate
Online Ad Optimization

- Problem: which ad should be presented?
- Answer: present ad with highest payoff

\[\text{payoff} = \text{clickThroughRate} \times \text{payment} \]

- Click through rate: probability that user clicks on ad
- Payment: $$ paid by advertiser
 - Amount determined by an auction
Simplified Problem

- Assume payment is 1 unit for all ads
- Need to estimate click through rate

- Formulate as a bandit problem:
 - Arms: the set of possible ads
 - Rewards: 0 (no click) or 1 (click)

- In what order should ads be presented to maximize revenue?
 - How should we balance exploitation and exploration?
Simple yet Difficult Problem

- Simple: description of the problem is short
- Difficult: no known tractable optimal solution
Simple Heuristics

- **Greedy strategy**: select the arm with the highest average so far
 - May get stuck due to lack of exploration

- **\(\epsilon \)-greedy**: select an arm at random with probability \(\epsilon \) and otherwise do a greedy selection
 - Convergence rate depends on choice of \(\epsilon \)
Regret

- Let $R(a)$ be the **true (unknown) expected reward** of a

- Let $r^* = \max_a R(a)$ and $a^* = \arg\max_a R(a)$

- Denote by $loss(a)$ the **expected regret** of a

 \[loss(a) = r^* - R(a) \]

- Denote by $Loss_n$ the **expected cumulative regret** for n time steps

 \[Loss_n = \sum_{t=1}^{n} loss(a_t) \]
Theoretical Guarantees

- **When ϵ is constant, then**
 - For large enough t: $Pr(a_t \neq a^*) \approx \epsilon$
 - Expected cumulative regret: $Loss_n \approx \sum_{t=1}^{n} \epsilon \times 1 + (1 - \epsilon) \times 0 = \sum_{t=1}^{n} \epsilon = O(n)$
 - Linear regret

- **When $\epsilon_t \propto 1/t$**
 - For large enough t: $Pr(a_t \neq a^*) \approx \epsilon_t = O\left(\frac{1}{t}\right)$
 - Expected cumulative regret: $Loss_n \approx \sum_{t=1}^{n} \frac{1}{t} = O(\log n)$
 - Logarithmic regret
Empirical Mean

- Problem: how far is the empirical mean $\tilde{R}(a)$ from the true mean $R(a)$?

- If we knew that $|R(a) - \tilde{R}(a)| \leq \text{bound}$
 - Then we would know that $R(a) \leq \tilde{R}(a) + \text{bound}$
 - And we could select the arm with best $\tilde{R}(a) + \text{bound}$

- Overtime, additional data will allow us to refine $\tilde{R}(a)$ and compute a tighter bound.
Positivism in the Face of Uncertainty

- Suppose that we have an oracle that returns an upper bound $UB_n(a)$ on $R(a)$ for each arm based on n trials of arm a.

- Suppose the upper bound returned by this oracle converges to $R(a)$ in the limit:
 - i.e., $\lim_{n \to \infty} UB_n(a) = R(a)$

- Optimistic algorithm
 - At each step, select $\arg \max_a UB_n(a)$
Convergence

- **Theorem:** An optimistic strategy that always selects \(\arg\max_a UB_n(a) \) will converge to \(a^* \)

- **Proof by contradiction:**
 - Suppose that we converge to suboptimal arm \(a \) after infinitely many trials.
 - Then \(R(a) = UB_\infty(a) \geq UB_\infty(a') = R(a') \ \forall a' \)
 - But \(R(a) \geq R(a') \ \forall a' \) contradicts our assumption that \(a \) is suboptimal.
Probabilistic Upper Bound

- Problem: We can’t compute an upper bound with certainty since we are sampling

- However we can obtain measures f that are upper bounds most of the time
 - i.e., $\Pr(R(a) \leq f(a)) \geq 1 - \delta$

 Example: Hoeffding’s inequality
 $$\Pr \left(R(a) \leq \bar{R}(a) + \sqrt{\frac{\log \left(\frac{1}{\delta} \right)}{2n_a}} \right) \geq 1 - \delta$$

 where n_a is the number of trials for arm a
Upper Confidence Bound (UCB)

- Set $\delta_n = 1/n^4$ in Hoeffding’s bound
- Choose a with highest Hoeffding bound

\[
\text{UCB}(h)
\]

$V \leftarrow 0$, $n \leftarrow 0$, $n_a \leftarrow 0$ \hspace{1em} \forall a$

Repeat until $n = h$

Execute $\arg\max_a \tilde{R}(a) + \sqrt{\frac{2\log n}{n_a}}$

Receive r

$V \leftarrow V + r$

$\tilde{R}(a) \leftarrow \frac{n_a \tilde{R}(a) + r}{n_a + 1}$

$n \leftarrow n + 1$, $n_a \leftarrow n_a + 1$

Return V
UCB Convergence

- **Theorem:** Although Hoeffding’s bound is probabilistic, UCB converges.

- **Idea:** As \(n \) increases, the term \(\sqrt{\frac{2\log n}{n_a}} \) increases, ensuring that all arms are tried infinitely often.

- **Expected cumulative regret:** \(\text{Loss}_n = O(\log n) \)
 - Logarithmic regret
Multi-Armed Bandits

- Problem:
 - N bandits with unknown average reward $R(a)$
 - Which arm a should we play at each time step?
 - Exploitation/exploration tradeoff

- Common frequentist approaches:
 - ϵ-greedy
 - Upper confidence bound (UCB)

- Alternative Bayesian approaches
 - Thompson sampling
 - Gittins indices
Bayesian Learning

- **Notation:**
 - r^a: random variable for a’s rewards
 - $\Pr(r^a; \theta)$: unknown distribution (parameterized by θ)
 - $R(a) = E[r^a]$: unknown average reward

- **Idea:**
 - Express uncertainty about θ by a prior $\Pr(\theta)$
 - Compute posterior $\Pr(\theta | r_1^a, r_2^a, \ldots, r_n^a)$ based on samples $r_1^a, r_2^a, \ldots, r_n^a$ observed for a so far.

- **Bayes theorem:**
 $$\Pr(\theta | r_1^a, r_2^a, \ldots, r_n^a) \propto \Pr(\theta)\Pr(r_1^a, r_2^a, \ldots, r_n^a | \theta)$$
Distributional Information

- Posterior over \(\theta \) allows us to estimate
 - Distribution over next reward \(r^a \)

 \[
 Pr(r_{n+1}^a \mid r_1^a, r_2^a, \ldots, r_n^a) = \int \theta Pr(r_{n+1}^a \mid \theta)Pr(\theta \mid r_1^a, r_2^a, \ldots, r_n^a)d\theta
 \]
 - Distribution over \(R(a) \) when \(\theta \) includes the mean

 \[
 Pr\left(R(a) \mid r_1^a, r_2^a, \ldots, r_n^a \right) = Pr\left(\theta \mid r_1^a, r_2^a, \ldots, r_n^a \right) \text{ if } \theta = R(a)
 \]

- To guide exploration:
 - UCB: \(\Pr\left(R(a) \leq \text{bound}(r_1^a, r_2^a, \ldots, r_n^a) \right) \geq 1 - \delta \)
 - Bayesian techniques: \(\Pr\left(R(a) \mid r_1^a, r_2^a, \ldots, r_n^a \right) \)
Coin Example

- Consider two biased coins C_1 and C_2

 $R(C_1) = \Pr(\text{head})$

 $R(C_2) = \Pr(\text{head})$

- Problem:
 - Maximize # of heads in k flips
 - Which coin should we choose for each flip?
Bernoulli Variables

- r_{C_1}, r_{C_2} are Bernoulli variables with domain \{0,1\}

- Bernoulli distributions are parameterized by their mean
 - i.e., $\Pr(r_{C_1}; \theta_1) = \theta_1 = R(C_1)$
 - $\Pr(r_{C_2}; \theta_2) = \theta_2 = R(C_2)$
Beta Distribution

- Let the prior $\Pr(\theta)$ be a Beta distribution
 \[\text{Beta}(\theta; \alpha, \beta) \propto \theta^{\alpha-1}(1 - \theta)^{\beta-1} \]

 - $\alpha - 1$: # of heads
 - $\beta - 1$: # of tails

- $E[\theta] = \alpha / (\alpha + \beta)$
Belief Update

- Prior: \(\Pr(\theta) = Beta(\theta; \alpha, \beta) \propto \theta^{\alpha-1}(1 - \theta)^{\beta-1} \)

- Posterior after coin flip:

\[
\Pr(\theta \mid \text{head}) \propto \Pr(\theta) \cdot \Pr(\text{head} \mid \theta) \\
\propto \theta^{\alpha-1}(1 - \theta)^{\beta-1} \cdot \theta \\
= \theta^{(\alpha+1)-1}(1 - \theta)^{\beta-1} \propto Beta(\theta; \alpha + 1, \beta)
\]

\[
\Pr(\theta \mid \text{tail}) \propto \Pr(\theta) \cdot \Pr(\text{tail} \mid \theta) \\
\propto \theta^{\alpha-1}(1 - \theta)^{\beta-1} \cdot (1 - \theta) \\
= \theta^{\alpha-1}(1 - \theta)^{(\beta+1)-1} \propto Beta(\theta; \alpha, \beta + 1)
\]
Thompson Sampling

- Idea:
 - Sample several potential average rewards:
 \[R_1(a), \ldots, R_k(a) \sim \Pr(R(a) \mid r_1^a, \ldots, r_n^a) \text{ for each } a \]
 - Estimate empirical average
 \[\hat{R}(a) = \frac{1}{k} \sum_{i=1}^{k} R_i(a) \]
 - Execute \(\text{argmax}_a \hat{R}(a) \)

- Coin example
 - \(\Pr(R(a) \mid r_1^a, \ldots, r_n^a) = \text{Beta}(\theta_a; \alpha_a, \beta_a) \)
 - \(\alpha_a - 1 = \#\text{heads} \) and \(\beta_a - 1 = \#\text{tails} \)
Thompson Sampling Algorithm Bernoulli Rewards

\[
\text{ThompsonSampling}(h)
\]
\[
V \leftarrow 0
\]
For \(n = 1\) to \(h\)
\[
\text{Sample } R_1(a), \ldots, R_k(a) \sim \Pr(R(a)) \quad \forall a
\]
\[
\hat{R}(a) \leftarrow \frac{1}{k} \sum_{i=1}^{k} R_i(a) \quad \forall a
\]
\[
a^* \leftarrow \arg\max_a \hat{R}(a)
\]
Execute \(a^*\) and receive \(r\)
\[
V \leftarrow V + r
\]
Update \(\Pr(R(a^*))\) based on \(r\)
Return \(V\)
Comparison

Thompson Sampling
- Action Selection
 \[a^* = \arg\max_a \hat{R}(a) \]
- Empirical mean
 \[\hat{R}(a) = \frac{1}{k} \sum_{i=1}^{k} R_i(a) \]
- Samples
 \[R_j(a) \sim Pr(R(a) | r_1^a, \ldots, r_n^a) \]
 \[r_i^a \sim Pr(r^a; \theta) \]
- Some exploration

Greedy Strategy
- Action Selection
 \[a^* = \arg\max_a \tilde{R}(a) \]
- Empirical mean
 \[\tilde{R}(a) = \frac{1}{n} \sum_{i=1}^{n} r_i^a \]
- Samples
 \[r_i^a \sim Pr(r^a; \theta) \]
- No exploration
Sample Size

- In Thompson sampling, amount of data n and sample size k regulate amount of exploration.

- As n and k increase, $\hat{R}(a)$ becomes less stochastic, which reduces exploration.
 - As $n \uparrow$, $Pr(R(a) | r_1^a, \ldots, r_n^a)$ becomes more peaked.
 - As $k \uparrow$, $\hat{R}(a)$ approaches $\mathbb{E}[R(a) | r_1^a, \ldots, r_n^a]$.

- The stochasticity of $\hat{R}(a)$ ensures that all actions are chosen with some probability.
Analysis

- Thompson sampling converges to best arm

- Theory:
 - Expected cumulative regret: $O(\log n)$
 - On par with UCB and ϵ-greedy

- Practice:
 - Sample size k often set to 1
Summary

- **Stochastic bandits**
 - Exploration/exploitation tradeoff
 - ϵ-greedy and UCB
 - Theory: logarithmic expected cumulative regret

- **In practice:**
 - UCB often performs better than ϵ-greedy
 - Many variants of UCB improve performance

- **Bayesian Bandits**
 - Thompson Sampling