Lecture 19: Model-based Reinforcement Learning
CS486/686 Intro to Artificial Intelligence

2023-7-13

Sriram Ganapathi Subramanian,
Vector Institute
Outline

- Model-based RL
- Dyna
- Monte-Carlo Tree Search
Model-free Online RL

- No explicit transition or reward models
 - Q-learning: **value-based method**
 - Policy gradient: **policy-based method**
 - Actor critic: **policy and value-based method**
Model-based Online RL

- Learn explicit transition and/or reward model
 - Plan based on the model

- Benefit: Increased sample efficiency

- Drawback: Increased complexity
Maze Example

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>r</td>
<td>r</td>
<td>+1</td>
</tr>
<tr>
<td>u</td>
<td>u</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>l</td>
<td>l</td>
<td>l</td>
<td>l</td>
</tr>
</tbody>
</table>

$\gamma = 1$

Reward is -0.04 for non-terminal states

We need to learn all the transition probabilities!

$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3)_{+1}$

$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (4,3)_{+1}$

$(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2)_{-1}$

$P((2,3)|(1,3),r) = \frac{2}{3}$

$P((1,2)|(1,3),r) = \frac{1}{3}$

Use this information in

$$V^*(s) = \max_a R(s, a) + \gamma \sum_{s'} \Pr(s'| s, a) V^*(s')$$
Model-based RL

- Idea: at each step
 - Execute action
 - Observe resulting state and reward
 - Update transition and/or reward model
 - Update policy and/or value function
Model-based RL (with Value Iteration)

ModelBasedRL(s)
Repeat
Select and execute \(a \)
Observe \(s' \) and \(r \)
Update counts: \(n(s, a) \leftarrow n(s, a) + 1, \)
\(n(s, a, s') \leftarrow n(s, a, s') + 1 \)

Update transition: \(\Pr(s' | s, a) \leftarrow \frac{n(s, a, s')}{n(s, a)} \forall s' \)

Update reward: \(R(s, a) \leftarrow \frac{r + (n(s, a) - 1) R(s, a)}{n(s, a)} \)

Solve: \(V^*(s) = \max_a R(s, a) + \gamma \sum_{s'} \Pr(s' | s, a) V^*(s') \forall s \)
\(s \leftarrow s' \)
Until convergence of \(V^* \)
Return \(V^* \)
Complex Models

- Use function approximation for transition and reward models
 - Linear model: \(pdf(s' \mid s, a) = N(s' \mid w^T x, \sigma^2 I) \)

 - Non-linear models:
 - Stochastic (e.g., Gaussian process):
 \(pdf(s' \mid s, a) = GP(s \mid m(\cdot), k(\cdot, \cdot)) \)
 - Deterministic (e.g., neural network):
 \(s' = T(s, a) = NN(s, a) \)
Partial Planning

- In complex models, fully optimizing the policy or value function at each time step is intractable

- Consider partial planning
 - A few steps of Q-learning
 - Learning from simulated experience
Model-based RL (with Q-learning)

ModelBasedRL(s)
Repeat
Select and execute a, observe s' and r
Update transition: $w_T \leftarrow w_T - \alpha_T(T_{w_T}(s, a) - s') \nabla_{w_T} T_{w_T}(s, a)$
Update reward: $w_R \leftarrow w_R - \alpha_R(R_{w_R}(s, a) - r) \nabla_{w_R} R(s, a)$
Repeat a few times:
 sample \hat{s}, \hat{a} arbitrarily
 $\delta \leftarrow R_{w_R}(\hat{s}, \hat{a}) + \gamma \max_{\hat{a}'} Q_{w_Q}(T_{w_T}(\hat{s}, \hat{a}), \hat{a}') - Q_{w_Q}(\hat{s}, \hat{a})$
 Update Q: $w_Q \leftarrow w_Q - \alpha_Q \delta \nabla_{w_Q} Q_{w_Q}(\hat{s}, \hat{a})$
$s \leftarrow s'$
Until convergence of Q
Return Q
Partial Planning vs Replay Buffer

- Previous algorithm is very similar to Model-free Q-learning with a replay buffer
- Instead of updating Q-function based on samples from replay buffer, generate samples from model

- Replay buffer:
 - Simple, real samples, no generalization to other state-action pairs
- Partial planning with a model
 - Complex, simulated samples, generalization to other state-action pairs (can help or hurt)
Dyna

- Learn explicit transition and/or reward model
 - Plan based on the model
- Learn directly from real experience
Dyna-Q

Dyna-Q(s)
Repeat
 Select and execute \(a \), observe \(s' \) and \(r \)
 Update transition: \(w_T \leftarrow w_T - \alpha_T (T_{w_T}(s, a) - s') \nabla_{w_T} T_{w_T}(s, a) \)
 Update reward: \(w_R \leftarrow w_R - \alpha_R (R_{w_R}(s, a) - r) \nabla_{w_R} R(s, a) \)
 \[\delta \leftarrow r + \gamma \max_{a'} Q_{w_Q}(s', a') - Q_{w_Q}(s, a) \]
 Update Q: \(w_Q \leftarrow w_Q - \alpha_Q \delta \nabla_{w_Q} Q_{w_Q}(s, a) \)
Repeat a few times:
 sample \(\hat{s}, \hat{a} \) arbitrarily
 \[\delta \leftarrow R_{w_R}(\hat{s}, \hat{a}) + \gamma \max_{\hat{a}'} Q_{w_Q}(T_{w_T}(\hat{s}, \hat{a}), \hat{a}') - Q_{w_Q}(\hat{s}, \hat{a}) \]
 Update Q: \(w_Q \leftarrow w_Q - \alpha_Q \delta \nabla_{w_Q} Q_{w_Q}(\hat{s}, \hat{a}) \)
\(s \leftarrow s' \)
Return Q
Dyna-Q

Task:
reach G from S
Planning from Current State

- Instead of planning at arbitrary states, plan from the current state
 - This helps improve next action

- Monte Carlo Tree Search
Tree Search
Tractable Tree Search

- Combine 3 ideas:
 - Leaf nodes: approximate leaf values with value of default policy π

 $$Q^*(s, a) \approx Q^\pi(s, a) \approx \frac{1}{n(s, a)} \sum_{k=1}^{n} G_k$$

 - Chance nodes: approximate expectation by sampling from transition model

 $$Q^*(s, a) \approx R(s, a) + \gamma \sum_{s' \sim Pr(s'|s,a)} V(s')$$

 - Decision nodes: expand only most promising actions

 $$a^* = \arg\max_a Q(s, a) + c \sqrt{\frac{2 \ln n(s)}{n(s, a)}} \quad \text{and} \quad V^*(s) = \max_{a^*} Q^*(s, a^*)$$

- Resulting algorithm: Monte Carlo Tree Search
Computer Go

![Bar chart comparing Deep RL and Monte Carlo Tree Search in terms of Elo rating for different Go programs.](chart.png)
Monte Carlo Tree Search (with upper confidence bound)

UCT(s_0)
- create root node$_0$ with state $state(node_0) \leftarrow s_0$
- while within computational budget do
 - node$_1 \leftarrow TreePolicy(node_0)$
 - value $\leftarrow DefaultPolicy(state(node_1))$
 - Backup(node$_1$, value)
- return action(BestChild(node$_0$, 0))

TreePolicy(node)
- while node is nonterminal do
 - if node is not fully expanded do
 - return Expand(node)
 - else
 - node \leftarrow BestChild(node, C)
- return node
Monte Carlo Tree Search (continued)

Expand(node)
- choose $a \in$ untried actions of $A(state(node))$
- add a new child $node'$ to node
 - with $state(node') \leftarrow T(state(node), a)$
- return $node'$

BestChild(node,c)
- return $\arg\max_{node' \in \text{children}(node)} V(node') + c \sqrt{\frac{2\ln(n(node))}{n(node')}}$

DefaultPolicy(node)
- while $node$ is not terminal do
 - sample $a \sim \pi(a | state(node))$
 - $s' \leftarrow T(state(node), a)$
 - return $R(s, a)$
Monte Carlo Tree Search (continued)

Single Player

```
Backup(node, value)
while node is not null do
    V(node) ← \( \frac{n(node)V(node) + value}{n(node) + 1} \)
    n(node) ← n(node) + 1
    node ← parent(node)
```

Two Players (adversarial)

```
BackupMinMax(node, value)
while node is not null do
    V(node) ← \( \frac{n(node)V(node) + value}{n(node) + 1} \)
    n(node) ← n(node) + 1
    value ← − value
    node ← parent(node)
```
AlphaGo

Four steps:
1. Supervised Learning of Policy Networks
2. Policy gradient with Policy Networks
3. Value gradient with Value Networks
4. Searching with Policy and Value Networks
 - Monte Carlo Tree Search variant
Search Tree

- At each edge store $Q(s, a), \pi(a \mid s), n(s, a)$

- Where $n(s, a)$ is the visit count of (s, a)
Simulation

- At each node, select edge a^* that maximizes

 $a^* = \text{argmax}_a Q(s, a) + u(s, a)$

- where $u(s, a) \propto \frac{\pi(a \mid s)}{1 + n(s, a)}$ is an exploration bonus

$$Q(s, a) = \frac{1}{n(s, a)} \sum_i 1_i(s, a)[\lambda V_w(s) + (1 - \lambda)G_i]$$

$$1_i(s, a) = \begin{cases} 1 & \text{if } (s, a) \text{ was visited at iteration } i \\ 0 & \text{otherwise} \end{cases}$$