Lecture 19: Model-based Reinforcement Learning
CS486/686 Intro to Artificial Intelligence

2023-7-13

Sriram Ganapathi Subramanian,
Vector Institute

%’ WATERLOO

Outline

= Model-based RL
= Dyna
= Monte-Carlo Tree Search

W UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 19 - Sriram Ganapathi Subramanian 2 @ WATERLOO

Model-free Online RL

= No explicit transition or reward models
= Q-learning: value-based method

= Policy gradient: policy-based method

= Actor critic: policy and value-based method

{ Agent: update }

policy/value function
state action

reward

{ Environment }

W UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 19 - Sriram Ganapathi Subramanian 3 @ WATERLOO

Model-based Online RL

» Learn explicit transition and/or reward model
» Plan based on the model

= Benefit: Increased sample efficiency

= Drawback: Increased complexity
plan

T~

Agent: update Agent: update
model olicy/value function

state

: action
reward Environment -—

w UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 19 - Sriram Ganapathi Subramanian 4 @ WATERLOO

Maze Example

s T T T |+ vr=1 We need to

_ learn all the
21 u u 1 Reward is -0.04 for transition
ilul 11111 | nonterminal states probabilities!

1 2 3 4

(1,1)~> (1,2)=> (1,3)> (1,2)2> (1,3)~2> (2,3)2 (3,3)2 (4,3),4
(1,10~ (1,2)2 (1,3)2> (2,3)2> (3,3)2 (3,2)2> (3,3)2> 4,3),,
(1,1)=>(2,1)>(3,1)>(3,2)>(4,2),

igi’g)) ||((11:§))§)) :12 //33 } Use this information in

V*(s) = maxR(s, a) +)/Z Pr(s" s, a)V*(s")

w UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 19 - Sriram Ganapathi Subramanian 5 @ WATERLOO

Model-based RL

» Idea: at each step
= Execute action
» Observe resulting state and reward
» Update transition and/or reward model
» Update policy and/or value function

W UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 19 - Sriram Ganapathi Subramanian 6 @ WATERLOO

Model-based RL (with Value lteration)

ModelBasedRL(s)
Repeat
Select and execute a
Observe s’ and r
Update counts: n(s, a) < n(s,a) + 1,
n(s,a,s’) < n(s,a,s’)+ 1

. n(s,a,s’)
Update transition: Pr(s’| S,a) <« Vs’
n(s, a)
r + (n(s, a) — I)R(S, a)
Update reward: R(s, a) «
n(s, a)
Solve: V*(s) = maxR(s, a) + yz Pr(s’|s,a)V*(s)Vs
s « s’ ’
Until convergence of V'*
Return V*

NIVERSITY OF

WATERLOO

CS486/686 Spring 2023 - Lecture 19 - Sriram Ganapathi Subramanian 7

Complex Models

» Use function approximation for transition and reward models
» Linear model: pdf(s’| s, a) = N(s'|w'x, 6%I)

= Non-linear models:
= Stochastic (e.g., Gaussian process):
pdf(s'|s,a) = GP(s|m(-),k(-, "))
= Deterministic (e.g., neural network):
s'=T(s,a) = NN(s,a)

w UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 19 - Sriram Ganapathi Subramanian 8 @ WATERLOO

Partial Planning

» In complex models, fully optimizing the policy or value function at
each time step is intractable

» Consider partial planning
= A few steps of Q-learning
» Learning from simulated experience

W UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 19 - Sriram Ganapathi Subramanian 9 @ WATERLOO

Model-based RL (with Q-learning)

ModelBasedRL(s)
Repeat
Select and execute a, observe s’ and r

Update transition: w; < wy — ar(T, (s,a) —sHV,, T, (s,a)

Update reward: wy « wp — ag(R,, (s,a) =)V, R(s,a)

Repeat a few times:
sample §, a arbitrarily

5 < R, (3.4) +y max Q, (T, (5, a),a) = Q,, (5. d)

S s

Until convergence of Q
Return QO

w UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 19 - Sriram Ganapathi Subramanian 10 @ WATERLOO

Partial Planning vs Replay Buffer

» Previous algorithm is very similar to Model-free Q-learning with a
replay buffer

= Instead of updating Q-function based on samples from replay buffer,
generate samples from model

= Replay buffer:
= Simple, real samples, no generalization to other state-action pairs
» Partial planning with a model

= Complex, simulated samples, generalization to other state-action pairs (can help
or hurt)

w UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 19 - Sriram Ganapathi Subramanian 11 @ WATERLOO

Dyna

» Learn explicit transition and/or reward model
= Plan based on the model

» Learn directly from real experience

m

Agent: update Agent: update
model ohcy/ value function

state

state reward

action
reward Environment

W UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 19 - Sriram Ganapathi Subramanian 12 @ WATERLOO

Dyna-Q

Dyna-Q(s)
Repeat

Select and execute a, observe s’ and r

Update transition: wy < wy — an(T,, (s,a) —s)V,, T, (s,a)

Update reward: wg < wg — ag(R,, (s,a) =)V, R(s,a)

0 < r + y max QWQ(S’, a’) — QWQ(S, a)

Update Q: wy — wy — ags V,, 0, (5.4)

Repeat a few times:
sample §, d arbitrarily
0 <R, 5, a)+ymaxQ, (T, (5,a),a’) - 0, (5,0)
Up/date Q:wge—wg—agV,, O, (S, a)

S < S

Return QO

w UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 19 - Sriram Ganapathi Subramanian 13 @ WATERLOO

Dyna-Q

Task:
reach G
from S

Steps
per
episode

CS486/686 Spring 2023 - Lecture 19 -

Sriram Ganapathi Subramanian

G
800 |
' S
|
600 |
[
|
| O planning steps
400 — (direct RL only)
| /
| 4,”' 5 planning steps
:i'ﬁ/ﬁ 50 planning steps
200 v ' _—
x’” VA ?%
14 - N e — —— s
| | | | | |
2 10 20 30 40 50
Episodes

14

actions

&>

UNIVERSITY OF

WATERLOO

Planning from Current State

» Instead of planning at arbitrary states, plan from the current state
= This helps improve next action

= Monte Carlo Tree Search

W UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 19 - Sriram Ganapathi Subramanian 15 @ WATERLOO

Tree Search

s1

o*/\»
/\ /\

/\ /\ /\ /\

.51/\,,5 .q/\,4 .g/\s .1/\,,3 .1/\,9 .a/\,,s .g/\s .1/\,,3

s4 s5 s6 s7 s8 s9 s10 s11 s14 s15 s16 s17 s18 s19 s20 s21

W UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 19 - Sriram Ganapathi Subramanian 16 @ WATERLOO

Tractable Tree Search

= Combine 3 ideas:
= Leaf nodes: approximate leaf values with value of default policy =
1 n
*(s,a) ~ Q(s,a) & G
0%(s,a) ~ Q"(s, a) n(s,a); ‘
= Chance nodes: approximate expectation by sampling from transition model

Q*s.a) ¥ Rs.a)+y), W(s)

s'~Pr(s’|s,a)

= Decision nodes: expand only most promising actions

\/ 21n n(s)
a* = argmax Q(s,a) + ¢ and V*(s) = max O*(s, a*)
a n(s,a) a*

= Resulting algorithm: Monte Carlo Tree Search

w UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 19 - Sriram Ganapathi Subramanian 17 @ WATERLOO

Computer Go

Deep RL Monte Carlo Tree Search

3,500 = 1

3,000

2,500 —

2,000 -

Elo Rating

1,500

1,000

500 =

0 -

paInquisip
oneydpy
oneydy
INH ue4
su0ig Azenn
uaz

Iyoed
oban4
oHNuL)

w UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 19 - Sriram Ganapathi Subramanian 18 /@\ WATERLOO

Monte Carlo Tree Search (with upper confidence bound)

UCT(s,)
create root nodey with state State(nodeo) « 5
while within computational budget do
node; < TreePolicy(node)
value < DefaultPolicy(state (nodel))

Backup(node,;, value)
return action(BestChild(nodeo, O))

TreePolicy(node)
while node is nonterminal do
if node is not fully expanded do
return Expand(node)
else
node <« BestChild(node, C)
return node

w UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 19 - Sriram Ganapathi Subramanian 19 @ WATERLOO

Monte Carlo Tree Search (continued)

Expand(node)
choose a € untried actions of A(state(node)) o
add a new child node’ to node deter.rr%lmstlc
with state(node) « T(state(node), a) transition
return node’

BestChild(node,c)

, (21nn(node))
return arg max V<n0de) +c

node’ € children(node) n(node’)

DefaultPolicy(node)
while node is not terminal do
sample a ~ ﬂ(a | state(node))
s’ « T(state(node), a)
return R(s, a)

w UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 19 - Sriram Ganapathi Subramanian 20 @ WATERLOO

Monte Carlo Tree Search (continued)
Single Player

Backup(node,value)
while node is not null do
n(node)V(node) + value
V(node) «
n(node) + 1
n(node) < n(node) + 1
node < parent(node)

Two Players (adversarial)

BackupMinMax(node,value)

while node is not null do
n(node)V(node) + value
V(node) «

n(node) + 1
n(node) < n(node) + 1
value < — value
node <« parent(node)

w UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 19 - Sriram Ganapathi Subramanian 21 @ WATERLOO

AlphaGo

Four steps:

1. Supervised Learning of Policy Networks

2. Policy gradient with Policy Networks

3. Value gradient with Value Networks

4. Searching with Policy and Value Networks
= Monte Carlo Tree Search variant

w UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 19 - Sriram Ganapathi Subramanian 22 @ WATERLOO

Search Tree

» At each edge store
O(s, a), n(als), n(s, a)

= Where n(s, a) is the
visit count of (s, a)

w UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 19 - Sriram Ganapathi Subramanian 23 @ WATERLOO

Simulation

» At each node, select edge a* that maximizes
a* = argmax, Q(s,a) + u(s, a)

_ where u(s, a) « mals) is an exploration bonus
1 + n(s, a)
O(s.a) = 2 1(s, @)[AV,(5) + (1 = D)G]]
I’l S, Cl

(5. q) = 1 if(s,a) was visited at iteration i
0 otherwise

W UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 19 - Sriram Ganapathi Subramanian 24 @ WATERLOO

