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Outline

= RL with function approximation
= Linear approximation
= Neural network approximation

= Algorithms:
= Gradient Q-learning
= Deep Q-Network (DQN)

W UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 18 - Sriram Ganapathi Subramanian 2 @ WATE RLOO



Quick Recap

» Markov decision processes: value iteration
V(s) «max R(s,a) + vy 2 Pr(s’|s,a)V(s")

» Reinforcement learning: Q-learning
0(s, @) — Q(s, @) + a|r +y max O(s', @) = O(s, )

» Complexity depends on number of states and actions
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Large State Spaces

» Computer Go: 3°¢! states

» Inverted pendulum: {x, x’, 8, ")

= 4-dimensional
continuous state space

= Atari: 210 x 160 x 3 dimensions (pixel values)
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Function to be Approximated
= Policy: 7(s) — a
= Q-function: O(s,a) € R

= Value function: V(s) € R
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Q-function Approximation

= Let S = (‘xl’x2’ ...,,Xn)T

_ Linear: Q(s,a) ~ Z WX
i

= Non-linear (e.g., neural network): O(s, a) ~ g(x; w)
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Recall: Traditional Neural Network

= Qutputs: z

) W W
4 %Y

= Weights (parameters): w
= Bias: b
= Activation function (usually non-linear): 4

» Network of units (computational -
neurons) linked by weighted edges = \/ 7! ()
» Each unit computes: z = h(iw!x + b) O {i» k 9 —
= Inputs: x 8\/ = ( ((\/ o —
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Recall: Universal Function Approximator

Theorem: Neural networks with at least one hidden layer of sufficiently
many sigmoid/tanh/Gaussian units can approximate any function
arbitrarily closely.

W UNIVERSITY OF
CS486/686 Spring 2023 - Lecture 18 - Sriram Ganapathi Subramanian 8 @ WATE RLOO



Gradient Q-learning

» Minimize squared error between Q-value estimate and target
= Q-value estimate: Q, (s, a)
. Target: r + y max Qy(s’, a’)
a/

1
. Squared error: Err(w) = 10,5, = r = 7 max Ox(s’, L

3 . QEE_ o ;) aQw
. Gradient: ol [Qu(s, @) = r—y max Qg(s', @)l —
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Gradient Q-learning

Initialize weights w at random in [—1,1]
Observe current state s
Loop

Select action a and execute it
Receive immediate reward r

Observe new state s’

: oE 20,,(s,
Gradient: l = [QW(S’ a) — r — y max Qw(s’, a’)]M
ow a ow

oErr
ow

Update weights: w <« w — «

Update state: s « s’
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Recap: Convergence of Tabular Q-learning

= Tabular Q-Learning converges to optimal Q-function
under the following conditions:

o0 (0]
Zatzoo and 2%2< 00

1

n(s,a)

. Leta(s,a) =

= Where n(s, a) is # of times that (s, a) is visited

. Q-learning: O(s, a) « O(s,a) + a(s,a)[r +y max Q(s’,a’) — O(s,a)]
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Convergence of Linear Function Approximation Q-Learning

= Linear Q-Learning converges under the same conditions:

(6]

(0.o]
Zatzoo and Zat2<oo

=0 =0

1
- Letat=7

 Let Q,(s,a) = 2 W,X;

a 2
« Q-learning: w «w — at[Qw(Sa a) — r — y max Q,(s', a,)] Q,;(S a)
a’ W
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Divergence of Non-linear Gradient Q-learning
» Even when the following conditions hold

iatz oo and iat2< 00

=0 =0

non-linear Q-learning may diverge

« Intuition:

= Adjusting w to increase Q at (s, ) might introduce errors
at nearby state-action pairs.
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Mitigating divergence

» Two tricks are often used in practice:
1. Experience replay
2. Use two networks:

= Q-network
= Target network
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Experience Replay

» Idea: store previous experiences (s, a, s, r) into a buffer and sample a
mini-batch of previous experiences at each step to learn by Q-learning

» Advantages
= Break correlations between successive updates (imore stable learning)
= Less interactions with environment needed (better data efficiency)
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Target Network

» Idea: Use a separate target network that is updated only periodically

repeat for each (s, a, s/, ) in mini-batch:

00,,(s,a)
we—w—a|0,(s,a) —r—ymax Qys’,a’) P
a’ w

w<—uw
» Advantage: mitigate divergence
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Target Network

» Similar to value iteration:

repeat for all s
V(s) «max R(s) +y Z Pr(s'|s,a)V(s)) Vs

VeV
repeat for each (s, a, s, r) in mini-batch:
00,,(s, a)
We—w-— atle(s, a)—r—y max Qy(s’,a’) “ow

w < w
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Deep Q-network (DQN)
» Deep Mind

» Deep Q-network: Gradient Q-learning with
= Deep neural networks
= Experience replay
= Target network

» Breakthrough: human-level play in many Atari video games
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Deep Q-network (DQN)

Initialize weights w and w at random in [—1,1]
Observe current state s
Loop
Select action a and execute it
Receive immediate reward r
Observe new state s’
Add (s, a, s’, r) to experience buffer
Sample mini-batch of experiences from buffer
For each experience (5, 4, s’, #) in mini-batch

00,5, a)

: oErr A A A nn
Gradient: —— = [Q,,(§,d) — 7 — y max Q(s’,a’)]
ow a ow

oErr

Update weights: w «w — «
ow

Update state: s « s’
Every c steps, update target: w « w
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Deep Q-Network for Atari

Convolution Convolution Fully connected Fully connected
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DQN versus Linear Approximation
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