Lecture 17: Reinforcement Learning CS486/686 Intro to Artificial Intelligence

2023-7-06

Sriram Ganapathi Subramanian, Vector Institute

Outline

- Reinforcement Learning
 - Model-based RL, model-free RL
 - Value-based RL, policy-based RL, actor-critic
- Algorithms:
 - Monte-Carlo evaluation
 - Temporal Difference (TD) evaluation
 - Control: Q-learning

Recap: Markov Decision Process

- Formal Definition
 - States: $s \in S$
 - Actions: $a \in A$
 - Rewards: $r \in \Re$
 - Transition model: $Pr(s_t | s_{t-1}, a_{t-1})$
 - Reward model: $R(s_t, a_t) = Pr(r_t | s_t, a_t)$
 - Discount factor: $0 \le \gamma \le 1$
 - discounted: $\gamma < 1$ undiscounted: $\gamma = 1$
 - Horizon (i.e., # of time steps): h
 - Finite horizon: $h \in \mathbb{N}$ infinite horizon: $h = \infty$

Goal: find optimal policy such that
$$\pi^* = \arg \max_{\pi} \sum_{t=0}^{h} \gamma^t \mathbb{E}_{\pi}[r_t]$$

Reinforcement Learning Problem

Goal: Learn to choose actions that maximize rewards

Reinforcement Learning

- Formal Definition
 - States: $s \in S$
 - Actions: $a \in A$
 - Rewards: $r \in \Re$
 - Transition model: $Pr(s_t | s_{t-1}, a_{t-1})$

Unknown Models

- Reward model: $R(s_t, a_t)$
- Discount factor: $0 \le \gamma \le 1$
 - discounted: $\gamma < 1$ undiscounted: $\gamma = 1$
- Horizon (i.e., # of time steps): h
 - Finite horizon: $h \in \mathbb{N}$ infinite horizon: $h = \infty$

Goal: find optimal policy such that
$$\pi^* = \arg \max_{\pi} \sum_{t=0}^{h} \gamma^t \mathbb{E}_{\pi}[r_t]$$

Policy Optimization

- Markov Decision Process:
 - Known transition and reward model
 - Value and Policy Iteration
 - Find optimal policy using planning/dynamic programming
 - Execute the policy found
 - Unknown transition and reward model
 - Reinforcement learning
 - Learn optimal policy while interacting with environment

Current Assumptions

- Uncertainty: stochastic process
- Time: sequential process
- Observability: fully observable states
- No learning: complete model Unknown Model
- Variable type: discrete (e.g., discrete states and actions)

Example: Inverted Pendulum

- State: $x(t), x'(t), \theta(t), \theta'(t)$
- Action: Force *F*
- Reward: 1 for any step where pole balanced

Problem: Find $\pi : S \rightarrow A$ that maximizes rewards

Important Components in RL

RL agents may or may not include the following components:

- Model: Pr(s' | s, a), R(s, a)
 - Transition dynamics and rewards
- Policy: $\pi(s)$
 - Agent action choices
- Value function: V(s)
 - Expected total rewards of the agent policy

Categorizing RL agents

Value based

- No policy (implicit)
- Value function
 Policy based
- Policy
- No value function Actor critic
- Policy
- Value function

Model based

• Transition and reward model

Model free

 No transition and no reward model (implicit)

Online RL

 Learn by interacting with environment

Offline RL

- No environment
- Learn only from saved data

Toy Maze Example

3	r	r	r	+1
2	u		u	-1
1	u	1	1	1
	1	2	3	4

Start state: (1,1) Terminal states: (4,2), (4,3) No discount: $\gamma = 1$

Reward is -0.04 for non-terminal states

Four actions: up (u), left (l), right (r), down (d) **Do not know** the transition probabilities

What is the value V(s) of being in state *s*?

Unfair Dice

• Consider an unfair die with the following distribution:

Х	1	2	3	4	5	6
P(X)	1/6	2/6	0	2/6	0	1/6

• Objective: Determine the expected value of the dice

If
$$P(X)$$
 is given: $\mathbb{E}(X) = \sum_{x_i} X_i P(X_i) = 3.17$

- If P(X) is not given?
 - Roll the dice several times (*N*)

$$\mathbb{E}(X) \approx \frac{X_1 + X_2 + \ldots + X_N}{N}$$

• Just an estimate

Model Free Evaluation

- Given policy π , estimate $V^{\pi}(s)$ without any transition or reward model
- Monte Carlo evaluation

$$V_{\pi}(s) = \mathbb{E}_{\pi}\left[\sum_{t} \gamma^{t} r_{t} | s, \pi\right]$$

$$\approx \frac{1}{n(s)} \sum_{k=1}^{n(s)} \left[\sum_{t} \gamma^{t} r_{t}^{(k)} | s, \pi\right] \quad \text{(several sample approximation)}$$

• **Temporal difference (TD)** evaluation $V^{\pi}(s) = \mathbb{E}[r \mid s, \pi(s)] + \gamma \sum_{s'} Pr(s' \mid s, \pi(s)) V^{\pi}(s')$ $\approx r + \gamma V^{\pi}(s') \text{ (one sample approximation)}$

Monte Carlo Evaluation

• Let G_k be a one-trajectory Monte Carlo target

$$G_k = \sum_t \gamma^t r_t^{(k)}$$

• Examples:

•
$$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3)$$

$$G_1 = 1 - (0.04 \times 7) = 0.72$$

• $(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (4,3)$

 $G_2 = 1 - (0.04 \times 7) = 0.72$

• $(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2)$

Monte Carlo Evaluation

• Let G_k be a one-trajectory Monte Carlo target

$$G_k = \sum_t \gamma^t r_t^{(k)}$$

• Approximate value function

$$V_n^{\pi}(s) \approx \frac{1}{n(s)} \sum_{k=1}^{n(s)} G_k$$

= $\frac{1}{n(s)} \Big(G_{n(s)} + \sum_{k=1}^{n(s)-1} G_k \Big)$
= $\frac{1}{n(s)} \Big(G_{n(s)} + (n(s) - 1) V_{n-1}^{\pi}(s) \Big)$
= $V_{n-1}^{\pi}(s) + \frac{1}{n(s)} \Big(G_{n(s)} - V_{n-1}^{\pi}(s) \Big)$

Incremental update

$$V_n^{\pi}(s) \leftarrow V_{n-1}^{\pi}(s) + \alpha_n \left(G_n - V_{n-1}^{\pi}(s)\right)$$
, where $\alpha_n = \frac{1}{n(s)}$

Temporal Difference Evaluation

- Approximate value function: $V^{\pi}(s) \approx r + \gamma V^{\pi}(s')$
- Incremental update

 $V_n^{\pi}(s) \leftarrow V_{n-1}^{\pi}(s) + \alpha_n(r + \gamma V_{n-1}^{\pi}(s') - V_{n-1}^{\pi}(s))$

• **Theorem:** If α_n is appropriately decreased with # of times a state is visited then $V_n^{\pi}(s)$ converges to correct value.

Sufficient conditions for
$$\alpha_n$$
: (1) $\sum_n \alpha_n \to \infty$ (2) $\sum_n (\alpha_n)^2 < \infty$
Often $\alpha_n(s) = \frac{1}{n(s)}$ where $n(s) = \#$ of times *s* is visited

Temporal Difference (TD) Evaluation

TDevaluation(π, V^{π}) Repeat Execute $\pi(s)$ Observe *s'* and *r* Update counts: $n(s) \leftarrow n(s) + 1$ Learning rate: $\alpha \leftarrow \frac{1}{n(s)}$ Update value: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(r + \gamma V^{\pi}(s') - V^{\pi}(s))$ $s \leftarrow s'$ Until convergence of V^{π} Return V^{π}

Comparison

- Monte Carlo evaluation:
 - Unbiased estimate
 - High variance
 - Needs many trajectories

- Temporal difference evaluation:
 - Biased estimate
 - Lower variance
 - Needs less trajectories

Model Free Control

- Instead of evaluating the state value function, $V^{\pi}(s)$, evaluate the state-action value function, $Q^{\pi}(s, a)$

 $Q^{\pi}(s, a): \text{ value of executing } a \text{ followed by } \pi$ $Q^{\pi}(s, a) = \mathbb{E}[r \mid s, a] + \gamma \sum_{s'} Pr(s' \mid s, a) V^{\pi}(s')$

Greedy policy π':

 $\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$

Bellman's Equation

• Optimal state value function *V**(*s*)

$$V^{*}(s) = \max_{a} \mathbb{E}[r \,|\, s, a] + \gamma \sum_{s'} Pr(s' \,|\, s, a) V^{*}(s')$$

• Optimal state-action value function $Q^*(s, a)$

$$Q^{*}(s, a) = \mathbb{E}[r | s, a] + \gamma \sum_{s'} Pr(s' | s, a) \max_{a'} Q^{*}(s', a')$$

where $V^{*}(s) = \max_{a} Q^{*}(s, a)$
 $\pi^{*}(s) = \arg\max_{a} Q^{*}(s, a)$

Monte Carlo Control

• Let G_k^a be a one-trajectory Monte Carlo target

$$G_k^a = r_0^{(k)} + \sum_{t=1}^{k} \gamma^t r_t^{(k)}$$

- Alternate between
 - Policy evaluation

$$Q_k^{\pi}(s,a) \leftarrow Q_{k-1}^{\pi}(s,a) + \alpha_n \Big(G_k^a - Q_{k-1}^{\pi}(s,a) \Big)$$

Policy improvement

 $\pi'(s) \leftarrow \arg\max_a Q^{\pi}(s,a)$

Temporal Difference Control

Approximate Q-function:

$$Q^*(s,a) = \mathbb{E}[r \mid s,a] + \gamma \sum_{s'} Pr(s' \mid s,a) \max_{a'} Q^*(s',a')$$
$$\approx r + \gamma \max_{a'} Q^*(s',a')$$

Incremental update

$$Q_n^*(s,a) \leftarrow Q_{n-1}^*(s,a) + \alpha_n \left(r + \gamma \max_{a'} Q_{n-1}^*(s',a') - Q_{n-1}^*(s,a) \right)$$

Q-Learning

 $Q = Q^*$ Repeat Select and execute *a* Observe *s'* and *r* Update counts: $n(s, a) \leftarrow n(s, a) + 1$ Learning rate: $\alpha \leftarrow \frac{1}{n(s,a)}$ Update Q-value: $Q^*(s,a) \leftarrow Q^*(s,a) + \alpha \Big(r + \gamma \max_{a'} Q^*(s',a') - Q^*(s,a) \Big)$ $s \leftarrow s'$ Until convergence of Q^* Return Q^*

Q-learning Example

 $\gamma = 0.9, \ \alpha = 0.5, \ r = 0$ for non-terminal states

$$Q(s_1, \text{right}) = Q(s_1, \text{right}) + \alpha \left(r + \gamma \max_{a'} Q(s_2, a') - Q(s_1, \text{right}) \right)$$

= 73 + 0.5 \left(0 + 0.9 \max \{66, 81, 100\} - 73 \right)
= 73 + 0.5 \left(17 \right) = \text{81.5}

Q-Learning

 $Q = Q^*$ Repeat Select and execute *a* Observe *s'* and *r* Update counts: $n(s, a) \leftarrow n(s, a) + 1$ Learning rate: $\alpha \leftarrow \frac{1}{n(s,a)}$ Update Q-value: $Q^*(s,a) \leftarrow Q^*(s,a) + \alpha \Big(r + \gamma \max_{a'} Q^*(s',a') - Q^*(s,a) \Big)$ $s \leftarrow s'$ Until convergence of Q^* Return Q^*

Exploration vs Exploitation

- If agent always chooses action with highest value, then it is exploiting
 - The learned model is not accurate
 - Leads to suboptimal results
- By taking random actions (exploration), an agent may learn the model
 But what is the use of learning a complete model if parts of it are never used?
- Need a balance between exploitation and exploration

Common Exploration Methods

- *e*-greedy:
 - With probability ϵ , execute random action
 - Otherwise execute best action $a^* = \arg \max Q(s, a)$

Boltzmann exploration

- Increasing temperature T increases stochasticity

$$Pr(a) = \frac{e^{\frac{Q(s,a)}{T}}}{\sum_{a} e^{\frac{Q(s,a)}{T}}}$$

a

Exploration and Q-learning

- Q-learning converges to optimal Q-values if
 - Every state is visited infinitely often (due to exploration)
 - The action selection becomes greedy as time approaches infinity
 - The learning rate *α* is decreased fast enough, but not too fast (sufficient conditions for *α*):

(1)
$$\sum_{n} \alpha_{n} \to \infty$$
 (2) $\sum_{n} (\alpha_{n})^{2} < \infty$

Summary

- We can optimize a policy by RL when the transition and reward functions are unknown
- Model free, value based learning:
 - Monte Carlo learning (unbiased, but needs lots of data)
 - Temporal difference learning (low variance, less data)
- Active learning:
 - Exploration/exploitation dilemma

