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Outline

▪ Reinforcement Learning

▪ Model-based RL, model-free RL

▪ Value-based RL, policy-based RL, actor-critic


▪ Algorithms:

▪ Monte-Carlo evaluation

▪ Temporal Difference (TD) evaluation

▪ Control: Q-learning
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Recap: Markov Decision Process
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▪ Formal Definition

▪ States: 

▪ Actions: 

▪ Rewards: 

▪ Transition model: 

▪ Reward model: 

▪ Discount factor: 

▪ discounted:            undiscounted: 

▪ Horizon (i.e., # of time steps): 


▪ Finite horizon:      infinite horizon: 


▪ Goal: find optimal policy such that 

s ∈ S
a ∈ A

r ∈ ℜ
Pr(st |st−1, at−1)

R(st, at) = Pr(rt |st, at)
0 ≤ γ ≤ 1

γ < 1 γ = 1
h

h ∈ ℕ h = ∞

π* = arg max
π

h

∑
t=0

γt𝔼π[rt]
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Reinforcement Learning Problem
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Agent

Environment

State
Reward Action

Goal: Learn to choose actions that maximize rewards
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Reinforcement Learning
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▪ Formal Definition

▪ States: 

▪ Actions: 

▪ Rewards: 

▪ Transition model: 

▪ Reward model: 

▪ Discount factor: 

▪ discounted:            undiscounted: 

▪ Horizon (i.e., # of time steps): 


▪ Finite horizon:      infinite horizon: 


▪ Goal: find optimal policy such that 

s ∈ S
a ∈ A

r ∈ ℜ
Pr(st |st−1, at−1)

R(st, at)
0 ≤ γ ≤ 1

γ < 1 γ = 1
h

h ∈ ℕ h = ∞

π* = arg max
π

h

∑
t=0

γt𝔼π[rt]

Unknown Models
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Policy Optimization
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▪ Markov Decision Process:

▪ Known transition and reward model


▪ Value and Policy Iteration

▪ Find optimal policy using planning/dynamic programming 

▪ Execute the policy found 


▪ Unknown transition and reward model

▪ Reinforcement learning

▪ Learn optimal policy while interacting with environment 



Current Assumptions 
▪ Uncertainty: stochastic process 


▪ Time: sequential process 


▪ Observability: fully observable states 


▪ No learning: complete model


▪ Variable type: discrete (e.g., discrete states and actions)
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Unknown Model
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Example: Inverted Pendulum

8CS486/686 Spring 2023 - Lecture 17 - Sriram Ganapathi Subramanian

▪ State: 

▪ Action: Force  	 

▪ Reward: 1 for any step where pole balanced


Problem: Find  that maximizes rewards

x(t), x′￼(t), θ(t), θ′￼(t)
𝐹

π : S A
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Important Components in RL
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RL agents may or may not include the following 
components: 

▪ Model: 

▪ Transition dynamics and rewards


▪ Policy: 

▪ Agent action choices


▪ Value function: 

▪ Expected total rewards of the agent policy

Pr(s′￼|s, a), R(s, a)

π(s)

V(s)
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Categorizing RL agents
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Value based

• No policy (implicit)

• Value function

Policy based

• Policy

• No value function

Actor critic

• Policy

• Value function

Model based

• Transition and  

reward model 

Model free

• No transition and 

no reward model 
(implicit)


Online RL

• Learn by 

interacting with 
environment 

Offline RL

• No environment

• Learn only from 

saved data
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Toy Maze Example
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lllu
-1uu
+1rrr

1

2

3

1 2 3 4

Reward is -0.04 for  
non-terminal states

What is the value  of being in state ?
V(s) s

Four actions: up (u), left (l), right (r), down (d)

Do not know the transition probabilities

Start state: (1,1)

Terminal states: (4,2), (4,3)

No discount: 𝛾 = 1
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Unfair Dice
▪ Consider an unfair die with the following distribution: 


▪ Objective: Determine the expected value of the dice 


▪
If  is given: 


▪ If  is not given? 

▪ Roll the dice several times ( )





▪ Just an estimate

P(X ) 𝔼(X ) = ∑
xi

XiP(Xi) = 3.17

P(X )
N

𝔼(X ) ≈
X1 + X2 + … + XN

N

12

X 1 2 3 4 5 6
P(X) 1/6 2/6 0 2/6 0 1/6
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Model Free Evaluation 
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▪ Given policy , estimate  without any transition or reward model


▪ Monte Carlo evaluation

    

   (several sample approximation)


▪ Temporal difference (TD) evaluation

 

              (one sample approximation)

π Vπ(s)

Vπ(s) = 𝔼π[∑
t

γtrt |s, π]

≈
1

n(s)

n(s)

∑
k=1

[∑
t

γtr(k)
t |s, π]

Vπ(s) = 𝔼[r |s, π(s)] + γ∑
s′￼

Pr(s′￼|s, π(s))Vπ(s′￼)

≈ r + γVπ(s′￼)
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Monte Carlo Evaluation
▪ Let  be a one-trajectory Monte Carlo target

                                     


▪ Examples: 


▪ (1,1)  (1,2)  (1,3)  (1,2)  (1,3)  (2,3)  (3,3)  (4,3)  


               


▪ (1,1)  (1,2)  (1,3)  (2,3)  (3,3)  (3,2)  (3,3)  (4,3) 





▪ (1,1)  (2,1)  (3,1)  (3,2)  (4,2)


              

𝐺𝑘

Gk = ∑
t

γtr(k)
t

G1 = 1 − (0.04 × 7) = 0.72

G2 = 1 − (0.04 × 7) = 0.72

G3 = − 1 − (0.04 × 4) = − 1.16
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Monte Carlo Evaluation
▪ Let  be a one-trajectory Monte Carlo target

                                     


▪ Approximate value function


    


                 


                 


                 

▪ Incremental update


               , where 

𝐺𝑘

Gk = ∑
t

γtr(k)
t

Vπ
n (s) ≈

1
n(s)

n(s)

∑
k=1

Gk

=
1

n(s) (Gn(s) +
n(s)−1

∑
k=1

Gk)
=

1
n(s) (Gn(s) + (n(s) − 1)Vπ

n−1(s))
= Vπ

n−1(s) +
1

n(s) (Gn(s) − Vπ
n−1(s))

Vπ
n (s) Vπ

n−1(s) + αn(Gn − Vπ
n−1(s)) αn =

1
n(s)

15
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Temporal Difference Evaluation
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▪ Approximate value function: 


▪ Incremental update

      


▪ Theorem:  If  is appropriately decreased with # of times a state is visited then 
 converges to correct value.


▪ Sufficient conditions for :    (1)           (2) 


▪ Often  where # of times  is visited

Vπ(s) ≈ r + γVπ(s′￼)

Vπ
n (s) Vπ

n−1(s) + αn(r + γVπ
n−1(s′￼) − Vπ

n−1(s))

αn
Vπ

n (s)
αn ∑

n

αn ∞ ∑
n

(αn)2 < ∞

αn(s) =
1

n(s)
n(s) = s
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Temporal Difference (TD) Evaluation
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TDevaluation( )

    Repeat

        Execute 

        Observe  and 

        Update counts: 

        Learning rate: 


        Update value: 

        

    Until convergence of 

    Return 

π, Vπ

π(s)
s′￼ r

n(s) n(s) + 1
α

1
n(s)

Vπ(s) Vπ(s) + α(r + γVπ(s′￼) − Vπ(s))
s s′￼

Vπ

Vπ
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Comparison
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▪ Monte Carlo evaluation:

▪ Unbiased estimate


▪ High variance


▪ Needs many trajectories 

▪ Temporal difference evaluation:

▪ Biased estimate


▪ Lower variance


▪ Needs less trajectories
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Model Free Control
▪ Instead of evaluating the state value function, , evaluate the state-

action value function, 


 : value of executing  followed by 

 


▪ Greedy policy :

      

Vπ(s)
Qπ(s, a)

Qπ(s, a) a π
Qπ(s, a) = 𝔼[r |s, a] + γ∑

s′￼

Pr(s′￼|s, a)Vπ(s′￼)

π′￼

π′￼(s) = arg max
a

Qπ(s, a)

19
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Bellman’s Equation
▪ Optimal state value function  





▪ Optimal state-action value function 




	 	 	 where 
 

                                       

V*(s)

V*(s) = max
a

𝔼[r |s, a] + γ∑
s′￼

Pr(s′￼|s, a)V*(s′￼)

𝑄∗(𝑠, 𝑎)

Q*(s, a) = 𝔼[r |s, a] + γ∑
s′￼

Pr(s′￼|s, a) max
a′￼

Q*(s′￼, a′￼)

V*(s) = max
a

Q*(s, a)

π*(s) = arg max
a

Q*(s, a)

20
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Monte Carlo Control
▪ Let  be a one-trajectory Monte Carlo target

                            


▪ Alternate between


▪ Policy evaluation





▪ Policy improvement


Ga
k

Ga
k = r(k)

0 + ∑
t=1

γtr(k)
t

Qπ
k (s, a) Qπ

k−1(s, a) + αn(Ga
k − Qπ

k−1(s, a))

π′￼(s) arg max
a

Qπ(s, a)

21
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Temporal Difference Control
▪ Approximate Q-function: 





                         


▪ Incremental update

     

Q*(s, a) = 𝔼[r |s, a] + γ∑
s′￼

Pr(s′￼|s, a) max
a′￼

Q*(s′￼, a′￼)

≈ r + γ max
a′￼

Q*(s′￼, a′￼)

Q*n (s, a) Q*n−1(s, a) + αn(r + γ max
a′￼

Q*n−1(s′￼, a′￼) − Q*n−1(s, a))

22
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Q-Learning
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Qlearning( )

    Repeat

        Select and execute 

        Observe  and 

        Update counts: 

        Learning rate: 


        Update Q-value: 

        


        

    Until convergence of     

Return 

s, Q*

a
s′￼ r

n(s, a) n(s, a) + 1
α

1
n(s, a)

Q*(s, a) Q*(s, a) + α(r + γ max
a′￼

Q*(s′￼, a′￼) − Q*(s, a))
s s′￼

Q*
Q*
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Q-learning Example
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S1
73 100

66 81

81.5 100

66 81

 ,   ,    for non-terminal statesγ = 0.9 α = 0.5 r = 0




            	  

                       

Q(s1, right) = Q(s1, right) + α(r + γ max
a′￼

Q(s2, a′￼) − Q(s1, right))
= 73 + 0.5(0 + 0.9 max{66,81,100} − 73)
= 73 + 0.5(17) = 81.5

S2 S2
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Q-Learning
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Qlearning( )

    Repeat

        Select and execute 

        Observe  and 

        Update counts: 

        Learning rate: 


        Update Q-value: 

        


        

    Until convergence of     

Return 

s, Q*

a
s′￼ r

n(s, a) n(s, a) + 1
α

1
n(s, a)

Q*(s, a) Q*(s, a) + α(r + γ max
a′￼

Q*(s′￼, a′￼) − Q*(s, a))
s s′￼

Q*
Q*
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Exploration vs Exploitation
▪ If agent always chooses action with highest value, then it is exploiting


▪ The learned model is not accurate


▪ Leads to suboptimal results


▪ By taking random actions (exploration), an agent may learn the model

▪ But what is the use of learning a complete model if parts of it are never used?


▪ Need a balance between exploitation and exploration

26
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Common Exploration Methods
▪ -greedy:


▪ With probability , execute random action


▪ Otherwise execute best action 


▪ Boltzmann exploration

▪ Increasing temperature  T increases stochasticity

ϵ
ϵ

a* = arg max
a

Q(s, a)

27

Pr(a) =
e

Q(s, a)
T

∑a e
Q(s, a)

T
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Exploration and Q-learning 
▪ Q-learning converges to optimal Q-values if


▪ Every state is visited infinitely often (due to exploration)


▪ The action selection becomes greedy as time approaches infinity


▪ The learning rate  is decreased fast enough, but not too fast  
(sufficient conditions for ):  


            (1)           (2) 

α
α

∑
n

αn ∞ ∑
n

(αn)2 < ∞

28
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Summary
▪ We can optimize a policy by RL when the transition and reward functions are 

unknown


▪ Model free, value based learning:

▪ Monte Carlo learning (unbiased, but needs lots of data)

▪ Temporal difference learning (low variance, less data)


▪ Active learning:

▪ Exploration/exploitation dilemma
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