Lecture 16: Markov Decision Processes CS486/686 Intro to Artificial Intelligence

2023-7-04

Sriram Ganapathi Subramanian, Vector Institute

Instructor

- Sriram Ganapathi Subramanian
 - Postdoctoral Fellow at the Vector Institute
 - Previously: PhD Student at the University of Waterloo
 - Expertise: Multi-agent reinforcement learning, reinforcement learning, game theory, machine learning, deep learning

Logistics

- Private meetings:
 - Mondays 11 am 1.30 pm
 - Appointments required
 - Online or in-person (DC-2584)
 - Book in Calendly
- Open office hours:
 - No appointments required (MC-2035)
 - Tuesdays and Thursdays 5.30 pm 6.30 pm
- Lectures:
 - Slides available on course website
 - Recorded

Outline

- Markov Decision Processes
 - Value Iteration
 - Policy Iteration

Sequential Decision Making

- Applications
 - Robotics (e.g., control)
 - Investments (e.g., portfolio management)
 - Computational linguistics (e.g., dialogue management)
 - Operations research (e.g., inventory management, resource allocation, call admission control)
 - Assistive technologies (e.g., patient monitoring and support)

Markov Decision Processes

- Indefinite/Infinite Horizon Decision Networks
- Large Finite Horizon Decision Networks

Examples

- Robotic control
 - States: $\langle x, y, z, \theta \rangle$ coordinates of joints
 - Actions: forces applied to joints
 - Rewards: distance to goal position
- Inventory management
 - States: inventory level
 - Actions: {doNothing, orderWidgets}
 - Rewards: sales costs storage

Markov Decision Processes

- Formal Definition
 - States: $s \in S$
 - Actions: $a \in A$
 - Rewards: $r \in \Re$
 - Transition model: $Pr(s_t | s_{t-1}, a_{t-1})$
 - Reward model: $R(s_t, a_t)$
 - Discount factor: $0 \le \gamma \le 1$
 - discounted: $\gamma < 1$ undiscounted: $\gamma = 1$
 - Horizon (i.e., # of time steps): *h*
 - Finite horizon: $h \in \mathbb{N}$ infinite horizon: $h = \infty$
- Goal: find optimal policy

Current Assumptions

- Uncertainty: stochastic process
- Time: sequential process
- Observability: fully observable states
- No learning: complete model
- Variable type: discrete (e.g., discrete states and actions)

Transition Model

- Definition: $Pr(s_t | s_{t-1}, a_{t-1})$
 - Capture uncertainty in dynamics of the system
- Assumptions
 - Markov: $Pr(s_t | s_{t-1}, a_{t-1}, s_{t-2}, a_{t-2}, ...) = Pr(s_t | s_{t-1}, a_{t-1})$
 - Stationary: $Pr(s_t | s_{t-1}, a_{t-1})$ is same for given $(s_t, a_{t-1}, s_{t-1}) \forall t$
- Mobile Robotics:
- *s_t*: position
- a_t : motion

Reward Model

- Rewards: $r_t \in \Re$
- Reward Function: $R(s_t, a_t) = r_t$
 - Mapping from state-action pairs to rewards
- Assumption: Stationary reward function
 - $R(s_t, a_t)$ is the same for a given $(s, a) \forall t$
- Exception: terminal reward is different
 - E.g., in a game: reward at each turn and +1/-1 at the end for winning/losing

Goal: maximize sum of expected rewards $\sum R(s_t, a_t)$

Discounted/Average Rewards

If process infinite, isn't $\sum_{t} R(s_t, a_t)$ infinite?

- Solution 1: discounted rewards
 - Discount factor: $0 \le \gamma < 1$ • Finite utility: $\sum_{t} \gamma^{t} R(s_{t}, a_{t})$ is a geometric sum
 - *γ* induces an inflation rate
 - Intuition: prefer utility sooner than later
- Solution 2: average rewards
 - More complicated computationally
 - Beyond the scope of this course

Inventory Management

- Markov Decision Process
 - States: inventory levels
 - Actions: {doNothing, orderWidgets}
 - Transition model: stochastic demand
 - Reward model: Sales Costs Storage
 - Discount factor: 0.999
 - Horizon: ∞
- Tradeoff: increasing supplies decreases odds of missed sales, but increases storage costs

Policy

- Choice of action at each time step
- Formally:
 - Mapping from states to actions
 - i.e., $\pi(s_t) = a_t$
 - Assumption: fully observable states
 - Allows a_t to be chosen only based on current state s_t
- Objective:

Find optimal policy such that
$$\pi^* = \arg \max_{\pi} \sum_{t=0}^{h} \gamma^t \mathbb{E}_{\pi}[r_t]$$

Policy Optimization

- Policy Evaluation:
 - Compute expected utility (value of following π)

$$V^{\pi}(s_0) = \sum_{t=0}^{h} \gamma^t \sum_{s_t} Pr(s_t | s_0, \pi) R(s_t, \pi(s_t))$$

- Optimal Policy:
 - Policy with highest expected utility

$$V^{\pi^*}(s_0) \ge V^{\pi}(s_0) \qquad \forall \pi$$

Policy Optimization

- Several classes of algorithms:
 - Value iteration
 - Policy iteration
 - Linear Programming
 - Search techniques (Deterministic transition model)
- Computation may be done
 - Offline: before the process starts
 - Online: as the process evolves

Value Iteration

• Value at first time step:

$$V_0(s) = \max_a R(s, a) \quad \forall s$$

• Value at second time step:

$$V_1(s) = \max_a R(s, a) + \gamma \sum_{s'} Pr(s' \mid s, a) V_0(s') \quad \forall s$$

• Value at third time step:

$$V_2(s) = \max_a R(s, a) + \gamma \sum_{s'} Pr(s' \mid s, a) V_1(s') \quad \forall s$$

-
- Bellman's equation

$$V_t(s) = \max_a R(s, a) + \gamma \sum_{s'} Pr(s' | s, a) V_{t-1}(s') \quad \forall s$$
$$a_t = \arg\max_a R(s, a) + \gamma \sum_{s'} Pr(s' | s, a) V_{t-1}(s') \quad \forall s$$

Value Iteration Algorithm

valueIteration(MDP) $V_0^*(s) \leftarrow \max_a R(s, a) \forall s$ For n = 1 to h do $V_n^*(s) \leftarrow \max_a R(s, a) + \gamma \sum_{s'} \Pr(s' \mid s, a) V_{n-1}^*(s') \forall s$ Return V^*

Optimal policy
$$\pi^*$$

 $t = 0: \pi_0^*(s) \leftarrow \operatorname{argmax} R(s, a) \forall s$
 $t > 0: \pi_n^*(s) \leftarrow \operatorname{argmax}_a^a R(s, a) + \gamma \sum_{s'} \Pr(s' \mid s, a) V_{n-1}^*(s') \forall s$
 π^* is non-stationary (i.e., time dependent)

Value Iteration

- Matrix form:
 - R^a : $|S| \times 1$ column vector of rewards for a V_n^* : $|S| \times 1$ column vector of state values T^a : $|S| \times |S|$ matrix of transition prob. for a

```
valueIteration(MDP)

V_0^* \leftarrow \max_a R^a

For t = 1 to h do

V_n^* \leftarrow \max_a R^a + \gamma T^a V_{n-1}^*

Return V^*
```


A Markov Decision Process

$$\gamma = 0.9$$

You own a company

In every state you must choose between

Saving money or Advertising

n	V(PU)	$\pi(PU)$	V(PF)	$\pi(PF)$	V(RU)	$\pi(RU)$	V(RF)	$\pi(RF)$
0	0	A,S	0	A,S	10	A,S	10	A,S
1	0	A,S	4.5	S	14.5	S	19	S
2	2.03	A	8.55	S	16.53	S	25.08	S
3	4.76	A	12.20	S	18.35	S	28.72	S
4	7.63	A	15.07	S	20.40	S	31.18	S
5	10.21	A	17.46	S	22.61	S	33.21	S

WATERLOO

CS486/686 Spring 2023 - Lecture 16 - Sriram Ganapathi Subramanian

Value Iteration Step 1 (for state RF)

- For all the states the value is the reward
- For all the states Policy is any of the action

$$V_0(RF) = max\{R(RF, A), R(RF, S)\}$$

= max{10,10}
= 10

$$\pi_0(RF) = \arg \max \{R(RF, A), R(RF, S)\}$$
$$= \{A, S\}$$

Value Iteration Step 2 (for state RF)

- For step 2 we should take a value iteration step with n = 1
- The value updates are as follows:

$$V_1(RF) = \max_{a} R(RF, a) + \gamma \sum_{s'} P(s' | RF, a) V_0(s')$$

 $= \max\{10 + 0.9 \times 1 \times 0, 10 + 0.9(0.5 \times 10 + 0.5 \times 10)\}$ $= \max\{10, 19\}$

= 19

- Policy is the action that maximizes value: $\pi_1(RF) = S$

Value Iteration Step 3 (for state RF)

- For step 3 we should take a value iteration step with n = 2
- The value updates are as follows:

$$V_2(RF) = \max_{a} R(RF, a) + \gamma \sum_{s'} P(s' | RF, a) V_1(s')$$

- $= \max\{10 + 0.9 \times 1 \times 4.5, 10 + 0.9(0.5 \times 19 + 0.5 \times 14.5)\}$
- $= \max\{14.05, 25.08\}$
- = 25.08
- Policy is the action that maximizes value: $\pi_2(RF) = S$

Horizon Effect

- Finite *h*:
 - Non-stationary optimal policy
 - No guarantee to converge
 - Best action different at each time step
 - Intuition: Best action varies with changing value estimate
- Infinite *h*:
 - Stationary optimal policy
 - Value iteration converges
 - Same best action at each time step
 - Intuition: Best action same with non-changing value estimate
 - **Problem:** Value iteration does infinite # of iterations...

Infinite Horizon

- Assuming a discount factor γ , after *n* time steps, rewards are scaled down by γ^n
- For large enough *n*, rewards become insignificant since $\gamma^n \to 0$
- Solution:
 - pick large enough *n*
 - run value iteration for *n* steps
 - Execute policy found at the *n*th iteration
- Solution 2:
 - Continue iterating until $|Vn V_{n-1}|_{\infty} \leq \epsilon$
 - *\epsilon* is called threshold or tolerance

Policy Optimization

- Value Iteration
 - Optimize value function
 - Extract induced policy

- Can we directly optimize the policy?
 - Yes, by policy iteration

Policy Iteration

- Alternate between two steps
 - Policy Evaluation

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} \Pr(s' | s, \pi(s)) V^{\pi}(s') \ \forall s$$

Policy Improvement

$$\pi(s) \leftarrow \operatorname*{argmax}_{a} R(s, a) + \gamma \sum_{s'} \Pr(s' \, \middle| \, s, a) V^{\pi}(s') \, \forall s$$

Algorithm

policyIteration(MDP) Initialize π_0 to any policy $n \leftarrow 0$ Repeat Eval: $V_n = R^{\pi_n} + \gamma T^{\pi_n} V_n$ Improve: $\pi_{n+1} \leftarrow argmax_a \ R^a + \gamma T^a V_n$ $n \leftarrow n + 1$ Until $\pi_{n+1} = \pi_n$ Return π_n

Example (Policy Iteration)

n	V(PU)	$\pi(PU)$	V(PF)	$\pi(PF)$	V(RU)	$\pi(RU)$	V(RF)	$\pi(RF)$
0	0	A	0	A	10	A	10	А
1	31.6	A	38.6	S	44.0	S	54.2	S
2	31.6	A	38.6	S	44.0	S	54.2	S

Complexity

- Value Iteration:
 - Each iteration: $O(|S|^2 |A|)$
 - Many iterations: linear convergence
- Policy Iteration:
 - Each iteration: $O(|S|^3 + |S|^2 |A|)$
 - Few iterations: linear-quadratic convergence

Summary

- Markov Decision Processes
 - Models sequential decision making
 - (Possibly) Infinite or Indefinite horizon for decision making
 - Objective: Find the optimal policy
- Policy Optimization
 - Value Iteration
 - Policy Iteration
 - Examples
- Think about:
 - What happens if the transition model and/or reward model is not given?

