
Lecture 15: Decision Networks
CS486/686 Intro to Artificial Intelligence

Pascal Poupart
David R. Cheriton School of Computer Science

2023-6-29

Outline
§ Utility theory

§ Decision Networks
§ Aka Influence diagrams

§ Value of information

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 2

Decision Making Under Uncertainty
§ Options for your next smartphone: screen size, battery capacity, weight,

brandname, etc.

§ Many configurations:
§ Large screen, big battery, heavy, brandname

§ Small screen, small battery, light, brandname

§ Small screen, small battery, light, noname

§ etc.

§ Which configuration do you prefer?

§ How much would you pay for each configuration?

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 3

§ A preference ordering !!is a ranking of all possible states of
affairs (worlds) S
§ these could be outcomes of actions, truth assignments, states in a

search problem, etc.

§ s !"t: means that state s is at least as good as t

§ s ""t: means that state s is strictly preferred to t

§ s ~ t: means that the agent is indifferent between states s and t

Preferences

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 4

Preferences

§ If an agent’s actions are deterministic then we know what states will
occur

§ If an agent’s actions are not deterministic then we represent this by
lotteries
§ Probability distribution over outcomes
§ Lottery L=[p1,s1; p2,s2; …; pn,sn]
§ s1 occurs with probability p1, s2 occurs with probability p2,…

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 5

§ Orderability: Given 2 states A and B
§ (A ! B) v (B ! A) v (A ~ B)

§ Transitivity: Given 3 states, A, B, and C
§ (A ! B) Ù (B ! C) Þ (A ! C)

§ Continuity:
§ A ! B ! C Þ $p [p,A;1-p,C] ~ B

§ Substitutability:
§ A~B à [p,A;1-p,C] ~ [p,B;1-p,C]

§ Monotonicity:
§ A ! B Þ (p ³ q Û [p,A;1-p,B] ! [q,A;1-q,B])

§ Decomposibility:
§ [p,A;1-p,[q,B;1-q,C]] ~ [p,A;(1-p)q,B; (1-p)(1-q),C]

Axioms

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 6

§ Structure of preference ordering imposes
certain “rationality requirements” (it is a weak
ordering)

§ E.g., why transitivity?
§ Suppose you (strictly) prefer coffee to tea, tea to OJ,

OJ to coffee

§ If you prefer X to Y, you’ll trade me Y plus $1 for X

§ I can construct a “money pump” and extract
arbitrary amounts of money from you

!

!

!

Best

Worst

Why Impose These Conditions?

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 7

§ Instead of ranking outcomes, we quantify our preferences
§ e.g., how much more valuable is coffee than tea

§ A utility function U:S →"!associates a real-valued utility with each
outcome.
§ U(s) measures your degree of preference for s

§ Note: U induces a preference ordering !U over S defined as: s !U t
iff U(s) ≥ U(t)
§ obviously !U will be reflexive and transitive

Utilities

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 8

§ Under conditions of uncertainty, each decision d induces a distribution
Prd over possible outcomes
§ Prd(s) is probability of outcome s under decision d

§ The expected utility of decision d is defined

§ The principle of maximum expected utility (MEU) states that the
optimal decision under conditions of uncertainty is that with the greatest
expected utility.

å
Î

=
Ss

d sUsdEU)()(Pr)(

Expected Utility

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 9

Decision Networks

§ Decision networks (also known as influence diagrams) provide
a way of representing sequential decision problems
§ basic idea: represent the variables in the problem as you would in a

Bayesian network

§ add decision variables – variables that you “control”

§ add utility variables – how good different states are

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 10

Sample Decision Network

Disease

TstResult
Chills

Fever

BloodTst Drug

U

optional

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 11

§ Chance nodes
§ random variables, denoted by circles
§ as in a BN, probabilistic dependence on parents

Disease

Fever

Pr(flu) = .3
Pr(mal) = .1
Pr(none) = .6

Pr(f|flu) = .5
Pr(f|mal) = .3
Pr(f|none) = .05

TstResult

BloodTst

Pr(pos|flu,bt) = .2
Pr(neg|flu,bt) = .8
Pr(null|flu,bt) = 0
Pr(pos|mal,bt) = .9
Pr(neg|mal,bt) = .1
Pr(null|mal,bt) = 0
Pr(pos|no,bt) = .1
Pr(neg|no,bt) = .9
Pr(null|no,bt) = 0
Pr(pos|D,~bt) = 0
Pr(neg|D,~bt) = 0
Pr(null|D,~bt) = 1

Decision Networks: Chance Nodes

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 12

§ Decision nodes
§ variables set by decision maker, denoted by squares

§ parents reflect information available at time decision is to be made

§ Example: the actual values of Ch and Fev will be observed before
the decision to take test must be made
§ agent can make different decisions for each instantiation of parents (i.e.,

policies)
Chills

Fever
BloodTst BT #$%&'($)&'*

Decision Networks: Decision Nodes

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 13

§ Value node
§ specifies utility of a state, denoted by a diamond

§ utility depends only on state of parents of value node
§ generally: only one value node in a decision network

§ Utility depends only on disease and drug

Disease

BloodTst Drug

U

optional

U(fludrug, flu) = 20
U(fludrug, mal) = -300
U(fludrug, none) = -5
U(maldrug, flu) = -30
U(maldrug, mal) = 10
U(maldrug, none) = -20
U(no drug, flu) = -10
U(no drug, mal) = -285
U(no drug, none) = 30

Decision Networks: Value Node

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 14

§ Decision nodes are totally ordered
§ decision variables D1, D2, …, Dn

§ decisions are made in sequence
§ e.g., BloodTst (yes,no) decided before Drug (fd,md,no)

§ No-forgetting property
§ any information available when decision Di is made is available when decision Dj

is made (for i < j)
§ thus all parents of Di are parents of Dj

Chills

Fever

BloodTst Drug
Dashed arcs
ensure the
no-forgetting
property

Decision Networks: Assumptions

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 15

§ Let Par(Di) be the parents of decision node Di
§ Dom(Par(Di)) is the set of assignments to parents

§ A policy !"is a set of mappings !i, one for each decision node Di
§ "i :Dom(Par(Di)) →Dom(Di)

§ "i associates a decision with each parent asst for Di

§ For example, a policy for BT might be:
§ "BT (c,f) = bt
§ "BT (c,~f) = ~bt

§ "BT (~c,f) = bt
§ "BT (~c,~f) = ~bt

Chills

Fever
BloodTst

Policies

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 16

§ Value of policy #!is the expected utility given that decisions
are executed according to #!

§ Given asst x to the set X of all chance variables, let #(x)
denote the asst to decision variables dictated by #!
§ e.g., asst to D1 determined by it’s parents’ asst in x
§ e.g., asst to D2 determined by it’s parents’ asst in x along with

whatever was assigned to D1

§ +',-
§ Value of # : EU(#) = ΣX P(X, #(X)) U(X, #(X))

Value of a Policy

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 17

Optimal Policies
§ An optimal policy is a policy #* such that EU(#$) ≥ EU(#) for all

policies #

§ We can use the dynamic programming principle yet again to avoid
enumerating all policies

§ We can also use the structure of the decision network to use variable
elimination to aid in the computation

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 18

§ We can work backwards as follows

§ First compute optimal policy for Drug (last dec’n)
§ for each asst to parents (C,F,BT,TR) and for each decision value (D =

md,fd,none), compute the expected value of choosing that value of D

§ set policy choice for each value of parents to be the value of D that has
max value

§ eg: .D(c,f,bt,pos) = md

Disease

TstResult
Chills

Fever
BloodTst Drug

U

optional

Computing the Best Policy

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 19

§ Next compute policy for BT given policy #D(C,F,BT,TR) just
determined for Drug
§ since .D(C,F,BT,TR) is fixed, we can treat Drug as a normal

random variable with deterministic probabilities

§ i.e., for any instantiation of parents, value of Drug is fixed by
policy .D

§ this means we can solve for optimal policy for BT just as before

§ only uninstantiated vars are random vars (once we fix its parents)

Computing the Best Policy

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 20

§ How do we compute these expected values?
§ suppose we have asst <c,f,bt,pos> to parents of Drug
§ we want to compute EU of deciding to set Drug = md
§ we can run variable elimination!

§ Treat C,F,BT,TR,Dr as evidence
§ this reduces factors (e.g., U restricted to bt,md: depends on Dis)
§ eliminate remaining variables (e.g., only Disease left)
§ left with factor: EU(md|c,f,bt,pos) =
ΣDis P(Dis|c,f,bt,pos,md) U(Dis,bt,md)

§ We now know EU of doing Dr=md when c,f,bt,pos true
§ Can do same for fd,no to decide which is best

Disease

TstResult
Chills

Fever
BloodTst Drug

U

optional

Computing the Best Policy

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 21

§ The preceding slide illustrates a general phenomenon
§ computing expected utilities with BNs is quite easy

§ utility nodes are just factors that can be dealt with using
variable elimination

 EU = ΣA,B,C P(A,B,C) U(B,C)

 = ΣA,B,C P(C|B) P(B|A) P(A) U(B,C)

§ Just eliminate variables in the usual way U

C

B

A

Computing Expected Utilities

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 22

§ If a decision node D has no decisions that follow it, we can find its
policy by instantiating each of its parents and computing the
expected utility of each decision for each parent instantiation
§ no-forgetting means that all other decisions are instantiated (they must be

parents)

§ its easy to compute the expected utility using VE

§ the number of computations is quite large: we run expected utility
calculations (VE) for each parent instantiation together with each possible
decision D might allow

§ policy: choose max decision for each parent instant’n

Optimizing Policies: Key Points

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 23

§ When a decision D node is optimized, it can be treated as a
random variable
§ for each instantiation of its parents we now know what value the

decision should take

§ just treat policy as a new CPT: for a given parent instantiation x, D gets
.(x) with probability 1 (all other decisions get probability zero)

§ If we optimize from last decision to first, at each point we can
optimize a specific decision by (a bunch of) simple VE
calculations
§ it’s successor decisions (optimized) are just normal nodes in the BNs

(with CPTs)

Optimizing Policies: Key Points

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 24

§ Setting: you want to buy a used car, but there’s a good
chance it is a “lemon” (i.e., prone to breakdown). Before
deciding to buy it, you can take it to a mechanic for
inspection. S/he will give you a report on the car, labeling it
either “good” or “bad”. A good report is positively correlated
with the car being sound, while a bad report is positively
correlated with the car being a lemon.

§ The report costs $50 however. So you could risk it, and buy
the car without the report.

§ Owning a sound car is better than having no car, which is
better than owning a lemon.

A Decision Net Example

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 25

Lemon

Report

Inspect Buy

U

l ~l
0.5 0.5

g b n

 l i 0.2 0.8 0
~l i 0.9 0.1 0
l ~i 0 0 1
~l ~i 0 0 1

Rep: good,bad,none

b l -600
 b ~l 1000
~b l -300
~b~l -300

Utility

-50 if
inspect

Car Buyer’s Network

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 26

Evaluate Last Decision: Buy (1)

§ EU(B|I,R) = ΣL P(L|I,R,B) U(L,I,B)

§ I = i, R = g:
§ EU(buy) = P(l|i,g,buy) U(l,i,buy) + P(~l|i,g,buy) U(~l,i,buy)

 = .18*-650 + .82*950 = 662

§ EU(~buy) = P(l|i,g,~buy) U(l,i,~buy) + P(~l|i,g,~buy) U(~l,i,~buy)
 = -300 - 50 = -350 (-300 indep. of lemon)

§ So optimal .Buy (i,g) = buy

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 27

Evaluate Last Decision: Buy (2)

§ I = i, R = b:
§ EU(buy) = P(l|i,b,buy) U(l,i,buy) + P(~l|i,b,buy) U(~l,i,buy)

 = .89*-650 + .11*950 = -474

§ EU(~buy) = P(l|i,b,~buy) U(l,i,~buy) +
P(~l|i, b,~buy) U(~l,i,~buy)

 = -300 - 50 = -350 (-300 indep. of lemon)

§ So optimal .Buy (i,b) = ~buy

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 28

§ I = ~i, R = n
§ EU(buy) = P(l|~i,n,buy) U(l,~i,buy) + P(~l|~i,n,buy) U(~l,~i,buy)

 = .5*-600 + .5*1000 = 200

§ EU(~buy) = P(l|~i,n,~buy) U(l,~i,~buy) + P(~l|~i,n,~buy) U(~l,~i,~buy)
 = -300 (-300 indep. of lemon)

§ So optimal "Buy (~i,n) = buy

§ So optimal policy for Buy is:
§ "Buy (i,g) = buy #$"Buy (i,b) = ~buy #$"Buy (~i,n) = buy

§ Note: we don’t bother computing policy for (i,~n), (~i, g), or (~i, b),
since these occur with probability 0

Evaluate Last Decision: Buy (3)

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 29

Restriction: replace f2(L,I,R) by f4(L) = f2(L,i,g)
 replace f3(L,I,B) by f5(L,B) = f3(L,i,B)
Step 1: Add f6(B)= ΣL f1(L) f4(L) f5(L,B)
 Remove: f1(L), f4(L), f5(L,B)
Last factor: f6(B) is proportional to the expected utility of buy

and ~buy. Select action with highest value.
Repeat for EU(B|i,b), EU(B|~i,n)

Factors: f1(L) f2(L,I,R) f3(L,I,B)
Query: EU(B)?
Evidence: I = i, R = g
Elim. Order: L

L
f1(L)

f3(L,I,B)

f2(L,I,R)R

I B

U

Using Variable Elimination

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 30

Alternatively
§ N.B.: variable elimination for decision networks computes

expected utility that are not scaled…
§ Can still pick best action, since utility scale is not important

(relative magnitude is what matters)
§ If we want exact expected utility:

§ Let X = parents(U)
§ EU(dec|evidence) = ΣX Pr(X|dec,evidence) U(X)
§ Compute Pr(X|dec,evidence) by variable elimination
§ Multiply Pr(X|dec,evidence) by U(X)
§ Summout X

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 31

§ EU(I) = ΣL,R P(L,R|i) U(L,i,#Buy (I,R))
§ where P(R,L|i) = P(R|L,i)P(L|i)
§ EU(i) = (.1)(-650)+(.4)(-350)+(.45)(950)+(.05)(-350) = 205
§ EU(~i) = P(n,l|~i) U(l,~i,buy) + P(n,~l|~i) U(~l,~i,buy) = .5*-600 + .5*1000 = 200
§ So optimal .Inspect () = inspect

P(R,L | i) .Buy U(L, i, .Buy)
g,l 0.1 buy -600 - 50 = -650
b,l 0.4 ~buy -300 - 50 = -350
g,~l 0.45 buy 1000 - 50 = 950
b,~l 0.05 ~buy -300 - 50 = -350

Evaluate First Decision: Inspect

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 32

N.B. f3(R,I,B) = !B(R,I)

Step 1: Add f5(R,I,B)= ΣL f1(L) f2(L,I,R) f4(L,I,B)
 Remove: f1(L) f2(L,I,R) f4(L,I,B)

Step 2: Add f6(I,B)= ΣR f3(R,I,B) f5(R,I,B)
 Remove: f3(R,I,B) f5(R,I,B)

Step 3: Add f7(I)= ΣB f6(I,B)
 Remove: f6(I,B)
Last factor: f7(I) is the expected utility of inspect and ~inspect. Select action with highest expected utility.

Factors: f1(L) f2(L,I,R) f3(R,I,B) f4(L,I,B)
Query: EU(I)?
Evidence: none
Elim. Order: L, R, B

L
f1(L)

f4(L,I,B)

f2(L,I,R)R

I B

U

f3(R,I,B)

Using Variable Elimination

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 33

§ So optimal policy is: inspect the car and if the report is good
buy, otherwise don’t buy
§ EU = 205
§ Notice that the EU of inspecting the car, then buying it iff you get a

good report is 205 (i.e., 255 – 50 (cost of inspection)) which is greater
than 200. So inspection improves EU.

§ Suppose inspection cost is $60: would it be worth it?
§ EU = 255 – 60 = 195 < EU(~i)

§ The expected value of information associated with inspection is 55 (it
improves expected utility by this amount ignoring cost of inspection).
How? Gives opportunity to change decision (~buy if bad).

§ You should be willing to pay up to $55 for the report

Value of Information

CS486/686 Spring 2023 - Lecture 15 - Pascal Poupart PAGE 34

