Lecture 15: Decision Networks CS486/686 Intro to Artificial Intelligence

```
2023-6-29
```

Pascal Poupart
David R. Cheriton School of Computer Science

Outline

- Utility theory
- Decision Networks
- Aka Influence diagrams
- Value of information

Decision Making Under Uncertainty

- Options for your next smartphone: screen size, battery capacity, weight, brandname, etc.
- Many configurations:
- Large screen, big battery, heavy, brandname
- Small screen, small battery, light, brandname
- Small screen, small battery, light, noname
- etc.
- Which configuration do you prefer?
- How much would you pay for each configuration?

Preferences

- A preference ordering \geqslant is a ranking of all possible states of affairs (worlds) S
- these could be outcomes of actions, truth assignments, states in a search problem, etc.
- $\mathrm{s} \geqslant \mathrm{t}$: means that state s is at least as good as t
- $\mathrm{s}>\mathrm{t}$: means that state s is strictly preferred to t
- $\mathrm{s} \sim \mathrm{t}$: means that the agent is indifferent between states s and t

Preferences

- If an agent's actions are deterministic then we know what states will occur
- If an agent's actions are not deterministic then we represent this by lotteries
- Probability distribution over outcomes
- Lottery L=[p $\left.\mathrm{p}_{1}, \mathrm{~s}_{1} ; \mathrm{p}_{2}, \mathrm{~s}_{2} ; \ldots ; \mathrm{p}_{\mathrm{n}}, \mathrm{s}_{\mathrm{n}}\right]$
- s_{1} occurs with probability p_{1}, s_{2} occurs with probability p_{2}, \ldots

Axioms

- Orderability: Given 2 states A and B
- $(\mathrm{A} \succ \mathrm{B}) v(\mathrm{~B} \succ \mathrm{~A}) v(\mathrm{~A} \sim \mathrm{~B})$
- Transitivity: Given 3 states, A, B, and C
- $(\mathrm{A}>\mathrm{B}) \wedge(\mathrm{B} \succ \mathrm{C}) \Rightarrow(\mathrm{A} \succ \mathrm{C})$
- Continuity:
- $\mathrm{A}>\mathrm{B}>\mathrm{C} \Rightarrow \exists \mathrm{p}[\mathrm{p}, \mathrm{A} ; 1-\mathrm{p}, \mathrm{C}] \sim \mathrm{B}$
- Substitutability:
- A~B \rightarrow [p,A;1-p,C] ~ [p,B;1-p,C]
- Monotonicity:
- $\mathrm{A} \succ \mathrm{B} \Rightarrow(\mathrm{p} \geq \mathrm{q} \Leftrightarrow[\mathrm{p}, \mathrm{A} ; 1-\mathrm{p}, \mathrm{B}]>[\mathrm{q}, \mathrm{A} ; 1-\mathrm{q}, \mathrm{B}])$
- Decomposibility:
- [p,A;1-p,[q,B;1-q,C]] ~ [p,A;(1-p)q,B; (1-p)(1-q),C]

Why Impose These Conditions?

- Structure of preference ordering imposes certain "rationality requirements" (it is a weak ordering)
- E.g., why transitivity?
- Suppose you (strictly) prefer coffee to tea, tea to OJ, OJ to coffee
- If you prefer X to Y , you'll trade me Y plus $\$ 1$ for X
- I can construct a "money pump" and extract arbitrary amounts of money from you

Utilities

- Instead of ranking outcomes, we quantify our preferences
- e.g., how much more valuable is coffee than tea
- A utility function $\mathrm{U}: \mathrm{S} \rightarrow \mathbb{R}$ associates a real-valued utility with each outcome.
- U(s) measures your degree of preference for s
- Note: U induces a preference ordering \geqslant_{U} over S defined as: $\mathrm{s} \geqslant_{\mathrm{u}} \mathrm{t}$ iff $\mathrm{U}(\mathrm{s}) \geq \mathrm{U}(\mathrm{t})$
- obviously $\geqslant \mathrm{v}$ will be reflexive and transitive

Expected Utility

- Under conditions of uncertainty, each decision d induces a distribution $\operatorname{Pr}_{\mathrm{d}}$ over possible outcomes
- $\operatorname{Pr}_{d}(s)$ is probability of outcome s under decision d
- The expected utility of decision d is defined

$$
E U(d)=\sum_{s \in S} \operatorname{Pr}_{d}(s) U(s)
$$

- The principle of maximum expected utility (MEU) states that the optimal decision under conditions of uncertainty is that with the greatest expected utility.

Decision Networks

- Decision networks (also known as influence diagrams) provide a way of representing sequential decision problems
- basic idea: represent the variables in the problem as you would in a Bayesian network
- add decision variables - variables that you "control"
- add utility variables - how good different states are

Sample Decision Network

Decision Networks: Chance Nodes

- Chance nodes

- random variables, denoted by circles
- as in a BN, probabilistic dependence on parents

Decision Networks: Decision Nodes

- Decision nodes
- variables set by decision maker, denoted by squares
- parents reflect information available at time decision is to be made
- Example: the actual values of Ch and Fev will be observed before the decision to take test must be made
- agent can make different decisions for each instantiation of parents (i.e., policies)

$$
\mathrm{BT} \in\{\mathrm{bt}, \sim \mathrm{bt}\}
$$

Decision Networks: Value Node

- Value node
- specifies utility of a state, denoted by a diamond
- utility depends only on state of parents of value node
- generally: only one value node in a decision network
- Utility depends only on disease and drug

$U(f l u d r u g, ~ f l u)=20$
$U(f l u d r u g, ~ m a l)=-300$
$U(f l u d r u g, ~ n o n e)=-5$
$U($ maldrug, flu) $)=-30$
$U($ maldrug, mal $)=10$
$U($ maldrug, none $)=-20$
$U($ no drug, flu $)=-10$
$U($ no drug, mal $)=-285$
$U($ no drug, none $)=30$

Decision Networks: Assumptions

- Decision nodes are totally ordered
- decision variables $D_{1}, D_{2}, \ldots, D_{n}$
- decisions are made in sequence
- e.g., BloodTst (yes,no) decided before Drug (fd,md,no)
- No-forgetting property
- any information available when decision D_{i} is made is available when decision D_{j} is made (for $\mathrm{i}<\mathrm{j}$)
- thus all parents of D_{i} are parents of D_{j}

$$
\begin{aligned}
& \text { Dashed arcs } \\
& \text { ensure the } \\
& \text { no-forgetting } \\
& \text { property }
\end{aligned}
$$

Policies

- Let $\operatorname{Par}\left(D_{i}\right)$ be the parents of decision node D_{i}
- $\operatorname{Dom}\left(\operatorname{Par}\left(D_{i}\right)\right)$ is the set of assignments to parents
- A policy δ is a set of mappings δ_{i}, one for each decision node D_{i}
- $\delta_{i}: \operatorname{Dom}\left(\operatorname{Par}\left(D_{i}\right)\right) \rightarrow \operatorname{Dom}\left(D_{i}\right)$
- δ_{i} associates a decision with each parent asst for D_{i}
- For example, a policy for BT might be:
- $\delta_{B T}(c, f)=b t$
- $\delta_{\text {ВT }}(c, \sim f)=\sim b t$
- $\delta_{\text {BT }}(\sim c, f)=b t$
- $\delta_{B T}(\sim c, \sim f)=\sim b t$

Value of a Policy

- Value of policy δ is the expected utility given that decisions are executed according to δ
- Given asst \mathbf{x} to the set \mathbf{X} of all chance variables, let $\delta(\mathbf{x})$ denote the asst to decision variables dictated by δ
- e.g., asst to D_{1} determined by it's parents' asst in \mathbf{x}
- e.g., asst to D_{2} determined by it's parents' asst in \mathbf{x} along with whatever was assigned to D_{1}
- etc.
- Value of $\delta: \mathrm{EU}(\delta)=\Sigma_{\mathbf{x}} \mathrm{P}(\mathbf{X}, \delta(\mathbf{X})) \mathrm{U}(\mathbf{X}, \delta(\mathbf{X}))$

Optimal Policies

- An optimal policy is a policy δ^{*} such that $\mathrm{EU}\left(\delta^{*}\right) \geq \mathrm{EU}(\delta)$ for all policies δ
- We can use the dynamic programming principle yet again to avoid enumerating all policies
- We can also use the structure of the decision network to use variable elimination to aid in the computation

Computing the Best Policy

- We can work backwards as follows
- First compute optimal policy for Drug (last dec'n)
- for each asst to parents (C,F,BT,TR) and for each decision value ($\mathrm{D}=$ md, fd, none $)$, compute the expected value of choosing that value of D
- set policy choice for each value of parents to be the value of D that has max value
- eg: $\delta_{D}(c, f, b t, p o s)=m d$

Computing the Best Policy

- Next compute policy for BT given policy $\delta_{D}(C, F, B T, T R)$ just determined for Drug
- since $\delta_{D}(C, F, B T, T R)$ is fixed, we can treat Drug as a normal random variable with deterministic probabilities
- i.e., for any instantiation of parents, value of Drug is fixed by policy δ_{D}
- this means we can solve for optimal policy for BT just as before
- only uninstantiated vars are random vars (once we fix its parents)

Computing the Best Policy

- How do we compute these expected values?
- suppose we have asst <c,f,bt,pos> to parents of Drug
- we want to compute EU of deciding to set Drug = md
- we can run variable elimination!
- Treat $C, F, B T, T R, D r$ as evidence

- this reduces factors (e.g., U restricted to $b t, m d$: depends on $D i s$)
- eliminate remaining variables (e.g., only Disease left)
- left with factor: EU(md|c,f,bt,pos) = $\Sigma_{\text {Dis }}$ P(Dis|c,f,bt,pos,md) U(Dis,bt,md)
- We now know EU of doing $D r=m d$ when $c, f, b t, p o s$ true
- Can do same for $f d$,no to decide which is best

Computing Expected Utilities

- The preceding slide illustrates a general phenomenon
- computing expected utilities with BNs is quite easy
- utility nodes are just factors that can be dealt with using variable elimination

$$
\begin{aligned}
\mathrm{EU} & =\Sigma_{\mathrm{A}, \mathrm{~B}, \mathrm{C}} \mathrm{P}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}) \mathrm{U}(\mathrm{~B}, \mathrm{C}) \\
& =\Sigma_{\mathrm{A}, \mathrm{~B}, \mathrm{C}} \mathrm{P}(\mathrm{C} \mid \mathrm{B}) \mathrm{P}(\mathrm{~B} \mid \mathrm{A}) \mathrm{P}(\mathrm{~A}) \mathrm{U}(\mathrm{~B}, \mathrm{C})
\end{aligned}
$$

- Just eliminate variables in the usual way

Optimizing Policies: Key Points

- If a decision node D has no decisions that follow it, we can find its policy by instantiating each of its parents and computing the expected utility of each decision for each parent instantiation
- no-forgetting means that all other decisions are instantiated (they must be parents)
- its easy to compute the expected utility using VE
- the number of computations is quite large: we run expected utility calculations (VE) for each parent instantiation together with each possible decision D might allow
- policy: choose max decision for each parent instant'n

Optimizing Policies: Key Points

- When a decision D node is optimized, it can be treated as a random variable
- for each instantiation of its parents we now know what value the decision should take
- just treat policy as a new CPT: for a given parent instantiation \mathbf{x}, D gets $\delta(\mathbf{x})$ with probability 1 (all other decisions get probability zero)
- If we optimize from last decision to first, at each point we can optimize a specific decision by (a bunch of) simple VE calculations
- it's successor decisions (optimized) are just normal nodes in the BNs (with CPTs)

A Decision Net Example

- Setting: you want to buy a used car, but there's a good chance it is a "lemon" (i.e., prone to breakdown). Before deciding to buy it, you can take it to a mechanic for inspection. S/he will give you a report on the car, labeling it either "good" or "bad". A good report is positively correlated with the car being sound, while a bad report is positively correlated with the car being a lemon.
- The report costs $\$ 50$ however. So you could risk it, and buy the car without the report.
- Owning a sound car is better than having no car, which is better than owning a lemon.

Car Buyer's Network

Evaluate Last Decision: Buy (1)

- $\mathrm{EU}(\mathrm{B} \mid \mathrm{I}, \mathrm{R})=\sum_{\mathrm{L}} \mathrm{P}(\mathrm{L} \mid \mathrm{I}, \mathrm{R}, \mathrm{B}) \mathrm{U}(\mathrm{L}, \mathrm{I}, \mathrm{B})$
- $\mathrm{I}=\mathrm{i}, \mathrm{R}=\mathrm{g}$:
- EU(buy) $=$ P(lli,g,buy) U(l,i,buy) + P($\sim \mid i \mathrm{i}, \mathrm{g}, \mathrm{buy}) \mathrm{U}(\sim l, \mathrm{i}, \mathrm{buy})$

$$
=.18^{*}-650+.82^{*} 950=662
$$

- EU($\sim b u y)=P(1 \mid i, g, \sim b u y) ~ U(l, i, \sim b u y)+P(\sim l \mid i, g, \sim b u y) U(\sim l, i, \sim b u y)$

$$
=-300-50=-350 \quad(-300 \text { indep. of lemon })
$$

- So optimal $\delta_{\text {Buy }}(i, g)=$ buy

Evaluate Last Decision: Buy (2)

- $\mathrm{I}=\mathrm{i}, \mathrm{R}=\mathrm{b}$:
- $\mathrm{EU}($ buy $)=P(1 \mid i, b, b u y) \mathrm{U}(1, i, b u y)+\mathrm{P}(\sim 1 \mid i, b, b u y) \mathrm{U}(\sim l, i, b u y)$

$$
=.89^{*}-650+.11^{*} 950=-474
$$

- $\mathrm{EU}(\sim b u y)=\mathrm{P}(\mathrm{l} \mid \mathrm{i}, \mathrm{b}, \sim b u y) \mathrm{U}(1, \mathrm{i}, \sim b u y)+$ P(~l|i, b,~buy) U(~l,i,~buy)

$$
=-300-50=-350 \quad(-300 \text { indep. of lemon) }
$$

- So optimal $\delta_{\text {Buy }}(i, b)=\sim b u y$

Evaluate Last Decision: Buy (3)

- $\mathrm{I}=\sim \mathrm{i}, \mathrm{R}=\mathrm{n}$
- $\operatorname{EU}($ buy $)=P(1 \mid \sim i, n, b u y) U(1, \sim i, b u y)+P(\sim 1 \mid \sim i, n, b u y) U(\sim 1, \sim i, b u y)$

$$
=.5^{*}-600+.5^{*} 1000=200
$$

- EU(~buy) $=$ P(l|~i,n, ~buy) $\mathrm{U}(1, \sim \mathrm{i}, \sim b$ by $)+\mathrm{P}(\sim 1 \mid \sim \mathrm{i}, \mathrm{n}, \sim b u y) \mathrm{U}(\sim 1, \sim \mathrm{i}, \sim b u y)$

$$
=-300(-300 \text { indep. of lemon })
$$

- So optimal $\delta_{\text {Buy }}(\sim i, n)=b u y$
- So optimal policy for Buy is:
- $\delta_{\text {Buy }}(i, g)=b u y ; \delta_{\text {Buy }}(i, b)=\sim b u y ; \delta_{\text {Buy }}(\sim i, n)=b u y$
- Note: we don't bother computing policy for (i, $\sim \mathrm{n}),(\sim \mathrm{i}, \mathrm{g})$, or ($\sim \mathrm{i}, \mathrm{b}$), since these occur with probability o

Using Variable Elimination

Factors: $f_{1}(L) f_{2}(L, I, R) f_{3}(L, I, B)$
Query: $\mathrm{EU}(\mathrm{B})$?
Evidence: $\mathrm{I}=\mathrm{i}, \mathrm{R}=\mathrm{g}$
Elim. Order: L

Restriction: replace $f_{2}(L, I, R)$ by $f_{4}(L)=f_{2}(L, i, g)$

$$
\text { replace } f_{3}(L, I, B) \text { by } f_{5}(L, B)=f_{3}(L, i, B)
$$

Step 1: Add $\mathrm{f}_{6}(\mathrm{~B})=\Sigma_{\mathrm{L}} \mathrm{f}_{1}(\mathrm{~L}) \mathrm{f}_{4}(\mathrm{~L}) \mathrm{f}_{5}(\mathrm{~L}, \mathrm{~B})$
Remove: $f_{1}(L), f_{4}(L), f_{5}(L, B)$
Last factor: $\mathrm{f}_{6}(\mathrm{~B})$ is proportional to the expected utility of buy and \sim buy. Select action with highest value.
Repeat for $\operatorname{EU}(\mathrm{B} \mid \mathrm{i}, \mathrm{b}), \mathrm{EU}(\mathrm{B} \mid \sim \mathrm{i}, \mathrm{n})$

Alternatively

- N.B.: variable elimination for decision networks computes expected utility that are not scaled...
- Can still pick best action, since utility scale is not important (relative magnitude is what matters)
- If we want exact expected utility:
- Let $\mathbf{X}=$ parents(U)
- $\mathrm{EU}($ dec \mid evidence $)=\Sigma_{\mathbf{x}} \operatorname{Pr}(\mathbf{X} \mid$ dec,evidence $) \mathrm{U}(\mathbf{X})$
- Compute $\operatorname{Pr}(\mathbf{X} \mid$ dec,evidence $)$ by variable elimination
- Multiply $\operatorname{Pr}(\mathbf{X} \mid$ dec,evidence) by $U(\mathbf{X})$
- Summout X

Evaluate First Decision: Inspect

- $\mathrm{EU}(\mathrm{I})=\Sigma_{\mathrm{L}, \mathrm{R}} \mathrm{P}(\mathrm{L}, \mathrm{R} \mid \mathrm{i}) \mathrm{U}\left(\mathrm{L}, \mathrm{i}, \boldsymbol{\delta}_{\text {Buy }}(\boldsymbol{I}, \boldsymbol{R})\right)$
- where $\mathrm{P}(\mathrm{R}, \mathrm{L} \mid \mathrm{i})=\mathrm{P}(\mathrm{R} \mid \mathrm{L}, \mathrm{i}) \mathrm{P}(\mathrm{L} \mid \mathrm{i})$
- $\mathrm{EU}(\mathrm{i})=(.1)(-650)+(.4)(-350)+(.45)(950)+(.05)(-350)=205$
- $\mathrm{EU}(\sim \mathrm{i})=\mathrm{P}(\mathrm{n}, \mathrm{l} \mid \sim \mathrm{i}) \mathrm{U}(\mathrm{l}, \sim \mathrm{i}$, buy $)+\mathrm{P}(\mathrm{n}, \sim \mathrm{l} \mid \sim \mathrm{i}) \mathrm{U}(\sim \mathrm{l}, \sim \mathrm{i}$, buy $)=.5^{*}-600+.5^{*} 1000=200$
- So optimal $\delta_{\text {Inspect }}()=$ inspect

	$P(R, L \mid i)$	$\delta_{\text {Buy }}$	$U\left(L, i, \delta_{\text {Buy }}\right)$
g,I	0.1	buy	$-600-50=-650$
b,I	0.4	\sim buy	$-300-50=-350$
g, $\sim \mathcal{I}$	0.45	buy	$1000-50=950$
$b, \sim I$	0.05	\sim buy	$-300-50=-350$

Using Variable Elimination

Factors: $\mathrm{f}_{1}(\mathrm{~L}) \mathrm{f}_{2}(\mathrm{~L}, \mathrm{I}, \mathrm{R}) \mathrm{f}_{3}(\mathrm{R}, \mathrm{I}, \mathrm{B}) \mathrm{f}_{4}(\mathrm{~L}, \mathrm{I}, \mathrm{B})$ Query: EU(I)?
Evidence: none
Elim. Order: L, R, B
N.B. $\mathrm{f}_{3}(\mathrm{R}, \mathrm{I}, \mathrm{B})=\delta_{\mathrm{B}}(\mathrm{R}, \mathrm{I})$

Step 1: $\operatorname{Add}_{5}(R, I, B)=\Sigma_{L} f_{1}(L) f_{2}(L, I, R) f_{4}(L, I, B)$
Remove: $\mathrm{f}_{1}(\mathrm{~L}) \mathrm{f}_{2}(\mathrm{~L}, \mathrm{I}, \mathrm{R}) \mathrm{f}_{4}(\mathrm{~L}, \mathrm{I}, \mathrm{B})$
Step 2: $\operatorname{Add} f_{6}(I, B)=\sum_{R} f_{3}(R, I, B) f_{5}(R, I, B)$
Remove: $\mathrm{f}_{3}(\mathrm{R}, \mathrm{I}, \mathrm{B}) \mathrm{f}_{5}(\mathrm{R}, \mathrm{I}, \mathrm{B})$
Step 3: Add $\mathrm{f}_{7}(\mathrm{I})=\Sigma_{\mathrm{B}} \mathrm{f}_{6}(\mathrm{I}, \mathrm{B})$
Remove: $\mathrm{f}_{6}(\mathrm{I}, \mathrm{B})$
Last factor: $\mathrm{f}_{7}(\mathrm{I})$ is the expected utility of inspect and \sim inspect. Select action with highest expected utility.

Value of Information

- So optimal policy is: inspect the car and if the report is good buy, otherwise don't buy
- $\mathrm{EU}=205$
- Notice that the EU of inspecting the car, then buying it iff you get a good report is 205 (i.e., 255 - 50 (cost of inspection)) which is greater than 200. So inspection improves EU.
- Suppose inspection cost is $\$ 60$: would it be worth it?
- $\mathrm{EU}=255-60=195<\mathrm{EU}(\sim \mathrm{i})$
- The expected value of information associated with inspection is 55 (it improves expected utility by this amount ignoring cost of inspection). How? Gives opportunity to change decision (~buy if bad).
- You should be willing to pay up to $\$ 55$ for the report

