Lecture 13: Neural Networks CS486/686 Intro to Artificial Intelligence

2023-6-22

Pascal Poupart David R. Cheriton School of Computer Science

- Neural networks
 - Perceptron
 - Supervised learning algorithms for neural networks

Neuron

Artificial Neural Networks

- Idea: mimic the brain to do computation
- Artificial neural network:
 - Nodes (a.k.a. units) correspond to neurons
 - Links correspond to synapses
- Computation:
 - Numerical signal transmitted between nodes corresponds to chemical signals between neurons
 - Nodes modifying numerical signal corresponds to neurons firing rate

ANN Unit

For each unit i:

- Weights: W
 - Strength of the link from unit *i* to unit *j*
 - Input signals x_i weighted by W_{ii} and linearly combined:

$$a_j = \sum_i W_{ji} x_i + W_{j0} = W_j \overline{x}$$

Activation function: h

• Numerical signal produced: $y_j = h(a_j)$

ANN Unit

Picture

Activation Function

- Should be nonlinear
 - Otherwise, network is just a linear function
- Often chosen to mimic firing in neurons
 - Unit should be "active" (output near 1) when fed with the "right" inputs
 - Unit should be "inactive" (output near 0) when fed with the "wrong" inputs

Common Activation Functions

Threshold

Logic Gates

- McCulloch and Pitts (1943)
 - Design ANNs to represent Boolean functions
- What should be the weights of the following units to code AND, OR, NOT ?

PAGE 9

Network Structures

Feed-forward network

- Directed acyclic graph
- No internal state
- Simply computes outputs from inputs

Recurrent network

- Directed cyclic graph
- Dynamical system with internal states
- Can memorize information

Feed-forward network

Simple network with two inputs, one hidden layer of two units, one output unit

Perceptron

Single layer feed-forward network

Threshold Perceptron Hypothesis Space

- Hypothesis space *h_w*:
 - All binary classifications with parameters *w* s.t.

 $w^T \overline{x} > 0 \to +1$ $w^T \overline{x} < 0 \to -1$

• Since $w^T \overline{x}$ is linear in w, perceptron is called a **linear separator**

Linear Separability

• Are all Boolean gates linearly separable?

Sigmoid Perceptron

Represent "soft" linear separators

Multilayer Networks

 Adding two sigmoid units with parallel but opposite "cliffs" produces a ridge

Multilayer Networks

Adding two intersecting ridges (and thresholding) produces a bump

Multilayer Networks

• By tiling bumps of various heights together, we can approximate any function.

• **Theorem:** Neural networks with at least one hidden layer of sufficiently many sigmoid units can approximate any function arbitrarily closely.

$\label{eq:common activation functions} h$

• Threshold:
$$h(a) = \begin{cases} 1 & a \ge 0 \\ -1 & a < 0 \end{cases}$$

• Sigmoid: $h(a) = \sigma(a) = \frac{1}{1+e^{-a}}$

• Gaussian:
$$h(a) = e^{-\frac{1}{2}\left(\frac{a-\mu}{\sigma}\right)^2}$$

• Tanh:
$$h(a) = \tanh(a) = \frac{e^{a} - e^{-a}}{e^{a} + e^{-a}}$$

• Identity: h(a) = a

Weight training

- Parameters: $< W^{(1)}, W^{(2)}, ... >$
- Objectives:
 - Error minimization
 - Backpropagation (aka "backprop")
 - Maximum likelihood
 - Maximum a posteriori
 - Bayesian learning

Least squared error

Error function

$$E(W) = \frac{1}{2} \sum_{n} E_{n}(W)^{2} = \frac{1}{2} \sum_{n} \left| \left| f(x_{n}, W) - y_{n} \right| \right|_{2}^{2}$$

where x_n is the input of the n^{th} example y_n is the label of the n^{th} example $f(x_n, W)$ is the output of the neural net

Sequential Gradient Descent

• For each example (x_n, y_n) adjust the weights as follows:

$$w_{ji} \leftarrow w_{ji} - \eta \frac{\partial E_n}{\partial w_{ji}}$$

- How can we compute the gradient efficiently given an arbitrary network structure?
- Answer: backpropagation algorithm
- Today: automatic differentiation

Backpropagation Algorithm

- Two phases:
 - Forward phase: compute output z_j of each unit j

• Backward phase: compute delta δ_j at each unit j

Forward phase

- Propagate inputs forward to compute the output of each unit
- Output z_j at unit j:

 $z_j = h(a_j)$ where $a_j = \sum_i w_{ji} z_i$

Backward phase

• Use chain rule to recursively compute gradient

• For each weight
$$w_{ji}$$
: $\frac{\partial E_n}{\partial w_{ji}} = \frac{\partial E_n}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}} = \delta_j z_i$

• Let
$$\delta_j \equiv \frac{\partial E_n}{\partial a_j}$$
 then
 $\delta_j = \begin{cases} h'(a_j)(z_j - y_j) & \text{base case: } j \text{ is an output unit} \\ h'(a_j) \sum_k w_{kj} \delta_k & \text{recursion: } j \text{ is a hidden unit} \end{cases}$
• Since $a_j = \sum_i w_{ji} z_i$ then $\frac{\partial a_j}{\partial w_{ji}} = z_i$

Simple Example

- Consider a network with two layers:
 - Hidden nodes: $h(a) = \tanh(a) = \frac{e^a e^{-a}}{e^a + e^{-a}}$
 - Tip: $tanh'(a) = 1 (tanh(a))^2$
 - Output node: h(a) = a

Objective: squared error

Simple Example

- Forward propagation:
 - Hidden units: $a_j = z_j = z_j$
 - Output units: $a_k = z_k =$
- Backward propagation:
 - Output units: $\delta_k =$
 - Hidden units: $\delta_j =$
- Gradients:
 - Hidden layers: $\frac{\partial E_n}{\partial w_{ji}} =$
 - Output layer: $\frac{\partial E_n}{\partial w_{kj}} =$

Non-linear regression examples

- Two-layer network:
 - 3 tanh hidden units and 1 identity output unit

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart

Analysis

- Efficiency:
 - Fast gradient computation: linear in number of weights
- Convergence:
 - Slow convergence (linear rate)
 - May get trapped in local optima
- Prone to overfitting
 - Solutions: early stopping, regularization (add $||w||_2^2$ penalty term to objective), dropout

