
Lecture 13: Neural Networks
CS486/686 Intro to Artificial Intelligence

Pascal Poupart
David R. Cheriton School of Computer Science

2023-6-22

Outline

§ Neural networks
§ Perceptron

§ Supervised learning algorithms for neural networks

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 2

Neuron

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 3

Artificial Neural Networks
§ Idea: mimic the brain to do computation

§ Artificial neural network:
§ Nodes (a.k.a. units) correspond to neurons
§ Links correspond to synapses

§ Computation:
§ Numerical signal transmitted between nodes corresponds

to chemical signals between neurons
§ Nodes modifying numerical signal corresponds to neurons firing rate

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 4

ANN Unit
For each unit i:

§ Weights: 𝑾
§ Strength of the link from unit 𝑖 to unit 𝑗
§ Input signals 𝑥𝑖 weighted by 𝑊𝑗𝑖 and linearly combined:

𝑎𝑗 ='
!

𝑊"! 𝑥! +𝑊"# = 𝑾𝒋 *𝒙

§ Activation function: 𝒉
§ Numerical signal produced: 𝑦" = ℎ(𝑎")

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 5

ANN Unit
§ Picture

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 6

Activation Function

§ Should be nonlinear
§ Otherwise, network is just a linear function

§ Often chosen to mimic firing in neurons
§ Unit should be “active” (output near 1) when fed with the “right” inputs

§ Unit should be “inactive” (output near 0) when fed with the “wrong” inputs

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 7

Common Activation Functions

Threshold Sigmoid

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 8

Logic Gates
§ McCulloch and Pitts (1943)

§ Design ANNs to represent Boolean functions

§ What should be the weights of the following units to code AND, OR,
NOT ?

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 9

Network Structures

§ Feed-forward network
§ Directed acyclic graph
§ No internal state
§ Simply computes outputs from inputs

§ Recurrent network
§ Directed cyclic graph

§ Dynamical system with internal states
§ Can memorize information

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 10

Feed-forward network

§ Simple network with two inputs, one hidden layer of two units, one
output unit

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 11

Perceptron

§ Single layer feed-forward network

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 12

Threshold Perceptron Hypothesis Space

§ Hypothesis space ℎ𝒘:
§ All binary classifications with parameters 𝒘 s.t.

𝒘𝑻$𝒙 > 0 → +1
𝒘𝑻$𝒙 < 0 → −1

§ Since 𝒘𝑻#𝒙 is linear in 𝒘, perceptron is called a linear separator

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 13

Linear Separability

§ Are all Boolean gates linearly separable?

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 14

Sigmoid Perceptron

§ Represent “soft” linear separators

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 15

Multilayer Networks

§ Adding two sigmoid units with parallel but opposite “cliffs”
produces a ridge

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 16

Multilayer Networks

§ Adding two intersecting ridges (and thresholding) produces a bump

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 17

Multilayer Networks

§ By tiling bumps of various heights together, we can approximate
any function.

§ Theorem: Neural networks with at least one hidden layer of
sufficiently many sigmoid units can approximate any function
arbitrarily closely.

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 18

Common activation functions ℎ

§ Threshold: ℎ 𝑎 = & 1 𝑎 ≥ 0
−1 𝑎 < 0

§ Sigmoid: ℎ 𝑎 = 𝜎 𝑎 = !
!"#%&

§ Gaussian: ℎ 𝑎 = 𝑒$
'
(
&%)
*

(

§ Tanh: ℎ 𝑎 = tanh 𝑎 = #&$#%&

#&"#%&

§ Identity: ℎ 𝑎 = 𝑎

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 19

Weight training
§ Parameters: < 𝑾 # ,𝑾 $, … >

§ Objectives:
§ Error minimization

§ Backpropagation (aka “backprop”)

§ Maximum likelihood

§ Maximum a posteriori

§ Bayesian learning

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 20

Least squared error
§ Error function

𝐸 𝑾 =
1
2
.
%

𝐸% 𝑾 $ =
1
2
.
%

𝑓 𝒙𝒏,𝑾 − 𝑦% $
$

where 𝒙𝒏 is the input of the 𝑛'(example

𝑦% is the label of the 𝑛'(example

 𝑓 𝒙𝒏,𝑾 is the output of the neural net

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 21

Sequential Gradient Descent
§ For each example (𝒙% , 𝑦%) adjust the weights as follows:

𝑤)* ← 𝑤)* − 𝜂
𝜕𝐸%
𝜕𝑤)*

§ How can we compute the gradient efficiently given an arbitrary
network structure?

§ Answer: backpropagation algorithm

§ Today: automatic differentiation

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 22

Backpropagation Algorithm
§ Two phases:

§ Forward phase: compute output 𝑧" of each unit 𝑗

§ Backward phase: compute delta 𝛿" at each unit 𝑗

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 23

Forward phase
§ Propagate inputs forward to compute the output of each unit

§ Output 𝑧) at unit 𝑗:

 𝑧" = ℎ 𝑎" where a# = ∑$𝑤#$𝑧$

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 24

Backward phase
§ Use chain rule to recursively compute gradient

§ For each weight 𝑤"#:
$%!
$&"#

= $%!
$'"

$'"
$&"#

= 𝛿"𝑧#

§ Let 𝛿" ≡
$%!
$'"

 then

 𝛿" = 3
ℎ′(𝑎") 𝑧" − 𝑦"
ℎ′(𝑎")∑(𝑤("𝛿(

base case: 	𝑗 is an output unit
recursion: 𝑗 is a hidden unit

§ Since 𝑎" = ∑#𝑤"#𝑧# then $'"
$&"#

= 𝑧#

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 25

Simple Example

§ Consider a network with two layers:

§ Hidden nodes: ℎ 𝑎 = tanh 𝑎 =)$*)%$

)$+)%$

§ Tip: 𝑡𝑎𝑛ℎ% 𝑎 = 1 − (𝑡𝑎𝑛ℎ 𝑎)&

§ Output node: ℎ 𝑎 = 𝑎

§ Objective: squared error

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 26

Simple Example
§ Forward propagation:

§ Hidden units: 𝑎& = 𝑧& =

§ Output units: 𝑎' = 𝑧' =

§ Backward propagation:
§ Output units: 𝛿' =

§ Hidden units: 𝛿& =

§ Gradients:

§ Hidden layers: ()!
(*"#

=

§ Output layer: ()!
(*$"

=

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 27

Non-linear regression examples
§ Two-layer network:

§ 3 tanh hidden units and 1 identity output unit

𝑦 = 𝑥! 𝑦 = sin 𝑥

𝑦 = |𝑥| 𝑦 = 3
"#

$
𝛿 𝑡 𝑑𝑡

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 28

Analysis
§ Efficiency:

§ Fast gradient computation: linear in number of weights

§ Convergence:
§ Slow convergence (linear rate)

§ May get trapped in local optima

§ Prone to overfitting

§ Solutions: early stopping, regularization (add 𝑤 +
+ penalty term to objective),

dropout

CS486/686 Spring 2023 - Lecture 13 - Pascal Poupart PAGE 29

