Lecture 13: Neural Networks CS486/686 Intro to Artificial Intelligence

Pascal Poupart
David R. Cheriton School of Computer Science

Outline

- Neural networks
- Perceptron
- Supervised learning algorithms for neural networks

Neuron

Artificial Neural Networks

- Idea: mimic the brain to do computation
- Artificial neural network:
- Nodes (a.k.a. units) correspond to neurons
- Links correspond to synapses
- Computation:
- Numerical signal transmitted between nodes corresponds to chemical signals between neurons
- Nodes modifying numerical signal corresponds to neurons firing rate

ANN Unit

For each unit i:

- Weights: W
- Strength of the link from unit i to unit j
- Input signals x_{i} weighted by $W_{j i}$ and linearly combined:

$$
a_{j}=\sum_{i} W_{j i} x_{i}+W_{j 0}=W_{\boldsymbol{j}} \overline{\boldsymbol{x}}
$$

- Activation function: \boldsymbol{h}
- Numerical signal produced: $y_{j}=h\left(a_{j}\right)$

ANN Unit

- Picture

Activation Function

- Should be nonlinear
- Otherwise, network is just a linear function
- Often chosen to mimic firing in neurons
- Unit should be "active" (output near 1) when fed with the "right" inputs
- Unit should be "inactive" (output near 0) when fed with the "wrong" inputs

Common Activation Functions

Threshold
Sigmoid

Logic Gates

- McCulloch and Pitts (1943)
- Design ANNs to represent Boolean functions
- What should be the weights of the following units to code AND, OR, NOT ?

Network Structures

- Feed-forward network
- Directed acyclic graph
- No internal state
- Simply computes outputs from inputs
- Recurrent network
- Directed cyclic graph
- Dynamical system with internal states
- Can memorize information

Feed-forward network

- Simple network with two inputs, one hidden layer of two units, one output unit

Perceptron

- Single layer feed-forward network

Threshold Perceptron Hypothesis Space

- Hypothesis space h_{w} :
- All binary classifications with parameters \boldsymbol{w} s.t.

$$
\begin{aligned}
& \boldsymbol{w}^{T} \bar{x}>0 \rightarrow+1 \\
& \boldsymbol{w}^{T} \bar{x}<0 \rightarrow-1
\end{aligned}
$$

- Since $\boldsymbol{w}^{\boldsymbol{T}} \overline{\boldsymbol{x}}$ is linear in \boldsymbol{w}, perceptron is called a linear separator

Linear Separability

- Are all Boolean gates linearly separable?

(a) I_{1} and I_{2}

(b) I_{1} or I_{2}

(c) $\quad I_{1}$ xor I_{2}

Sigmoid Perceptron

- Represent "soft" linear separators

Multilayer Networks

- Adding two sigmoid units with parallel but opposite "cliffs" produces a ridge

Multilayer Networks

- Adding two intersecting ridges (and thresholding) produces a bump

Network output

Multilayer Networks

- By tiling bumps of various heights together, we can approximate any function.
- Theorem: Neural networks with at least one hidden layer of sufficiently many sigmoid units can approximate any function arbitrarily closely.

Common activation functions h

- Threshold: $h(a)=\left\{\begin{array}{cc}1 & a \geq 0 \\ -1 & a<0\end{array}\right.$
- Sigmoid: $h(a)=\sigma(a)=\frac{1}{1+e^{-a}}$
- Gaussian: $h(a)=e^{-\frac{1}{2}\left(\frac{a-\mu}{\sigma}\right)^{2}}$
- Tanh: $h(a)=\tanh (a)=\frac{e^{a}-e^{-a}}{e^{a}+e^{-a}}$
- Identity: $h(a)=a$

Weight training

- Parameters: $<\boldsymbol{W}^{(1)}, \boldsymbol{W}^{(2)}, \ldots>$
- Objectives:
- Error minimization
- Backpropagation (aka "backprop")
- Maximum likelihood
- Maximum a posteriori
- Bayesian learning

Least squared error

- Error function

$$
E(\boldsymbol{W})=\frac{1}{2} \sum_{n} E_{n}(\boldsymbol{W})^{2}=\frac{1}{2} \sum_{n}| | f\left(\boldsymbol{x}_{\boldsymbol{n}}, \boldsymbol{W}\right)-y_{n} \|_{2}^{2}
$$

where $\boldsymbol{x}_{\boldsymbol{n}}$ is the input of the $n^{\text {th }}$ example
y_{n} is the label of the $n^{\text {th }}$ example
$f\left(\boldsymbol{x}_{\boldsymbol{n}}, \boldsymbol{W}\right)$ is the output of the neural net

Sequential Gradient Descent

- For each example ($\boldsymbol{x}_{n}, y_{n}$) adjust the weights as follows:

$$
w_{j i} \leftarrow w_{j i}-\eta \frac{\partial E_{n}}{\partial w_{j i}}
$$

- How can we compute the gradient efficiently given an arbitrary network structure?
- Answer: backpropagation algorithm
- Today: automatic differentiation

Backpropagation Algorithm

- Two phases:
- Forward phase: compute output z_{j} of each unit j
- Backward phase: compute delta δ_{j} at each unit j

Forward phase

- Propagate inputs forward to compute the output of each unit
- Output z_{j} at unit j :
$z_{j}=h\left(a_{j}\right)$ where $\mathrm{a}_{j}=\sum_{i} w_{j i} z_{i}$

Backward phase

- Use chain rule to recursively compute gradient
- For each weight $w_{j i}: \frac{\partial E_{n}}{\partial w_{j i}}=\frac{\partial E_{n}}{\partial a_{j}} \frac{\partial a_{j}}{\partial w_{j i}}=\delta_{j} z_{i}$
- Let $\delta_{j} \equiv \frac{\partial E_{n}}{\partial a_{j}}$ then

$$
\delta_{j}= \begin{cases}h^{\prime}\left(a_{j}\right)\left(z_{j}-y_{j}\right) & \text { base case: } j \text { is an output unit } \\ h^{\prime}\left(a_{j}\right) \sum_{k} w_{k j} \delta_{k} & \text { recursion: } j \text { is a hidden unit }\end{cases}
$$

- Since $a_{j}=\sum_{i} w_{j i} z_{i}$ then $\frac{\partial a_{j}}{\partial w_{j i}}=z_{i}$

Simple Example

- Consider a network with two layers:
- Hidden nodes: $h(a)=\tanh (a)=\frac{e^{a}-e^{-a}}{e^{a}+e^{-a}}$
- Tip: $\tanh ^{\prime}(a)=1-(\tanh (a))^{2}$
- Output node: $h(a)=a$
- Objective: squared error

Simple Example

- Forward propagation:
- Hidden units: $a_{j}=$

$$
\begin{array}{r}
z_{j}= \\
z_{k}=
\end{array}
$$

- Output units: $a_{k}=$
- Backward propagation:
- Output units: $\delta_{k}=$
- Hidden units: $\delta_{j}=$
- Gradients:
- Hidden layers: $\frac{\partial E_{n}}{\partial w_{j i}}=$
- Output layer: $\frac{\partial E_{n}}{\partial w_{k j}}=$

Non-linear regression examples

- Two-layer network:
- 3 tanh hidden units and 1 identity output unit

Analysis

- Efficiency:
- Fast gradient computation: linear in number of weights
- Convergence:
- Slow convergence (linear rate)
- May get trapped in local optima
- Prone to overfitting
- Solutions: early stopping, regularization (add $||w||_{2}^{2}$ penalty term to objective), dropout

