Lecture 11: Statistical Learning CS486/686 Intro to Artificial Intelligence

2023-6-15

Pascal Poupart David R. Cheriton School of Computer Science

Outline

- Statistical learning
 - Bayesian learning
 - Maximum a posteriori
 - Maximum likelihood

Learning from complete Data

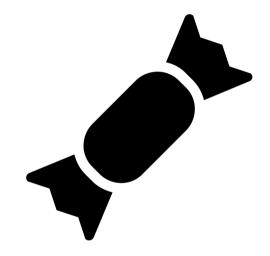
Statistical Learning

View: we have uncertain knowledge of the world

Idea: learning simply reduces this uncertainty

Candy Example

- Favorite candy sold in two flavors:
 - Lime (hugh)
 - Cherry (yum)
- Same wrapper for both flavors
- Sold in bags with different ratios:
 - 100% cherry
 - 75% cherry + 25% lime
 - 50% cherry + 50% lime
 - 25% cherry + 75% lime
 - 100% lime



Candy Example

You bought a bag of candy but don't know its flavor ratio

- After eating k candies:
 - What's the flavor ratio of the bag?
 - What will be the flavor of the next candy?

Statistical Learning

- Hypothesis H: probabilistic theory of the world
 - h₁: 100% cherry
 - h₂: 75% cherry + 25% lime
 - h₃: 50% cherry + 50% lime
 - h₄: 25% cherry + 75% lime
 - h₅: 100% lime
- Data D: evidence about the world
 - d₁: 1st candy is cherry
 - d₂: 2nd candy is lime
 - d₃: 3rd candy is lime
 - **-** ...

Bayesian Learning

- Prior: Pr(H)
- Likelihood: Pr(d|H)
- Evidence: $\mathbf{d} = \langle d_1, d_2, ..., d_n \rangle$

 Bayesian Learning amounts to computing the posterior using Bayes' Theorem:

$$Pr(H|\mathbf{d}) = k Pr(\mathbf{d}|H)Pr(H)$$

Bayesian Prediction

• Suppose we want to make a prediction about an unknown quantity X (i.e., the flavor of the next candy)

•
$$Pr(X|\mathbf{d}) = \Sigma_i Pr(X|\mathbf{d},h_i)P(h_i|\mathbf{d})$$

= $\Sigma_i Pr(X|h_i)P(h_i|\mathbf{d})$

- Predictions are weighted averages of the predictions of the individual hypotheses
- Hypotheses serve as "intermediaries" between raw data and prediction

Candy Example

- Assume prior $P(H) = \langle 0.1, 0.2, 0.4, 0.2, 0.1 \rangle$
- Assume candies are i.i.d. (identically and independently distributed)
 - $P(\mathbf{d}|\mathbf{h}) = \Pi_j P(\mathbf{d}_j|\mathbf{h})$

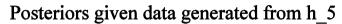
Suppose first 10 candies all taste lime:

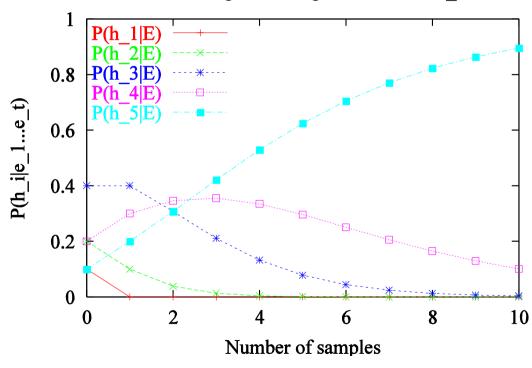
$$P(\mathbf{d}|\mathbf{h}_5) = \mathbf{h}_5 = \mathbf$$

•
$$P(\mathbf{d}|\mathbf{h}_3) = \mathbf{d}.5^{(1)} \approx 0.00$$

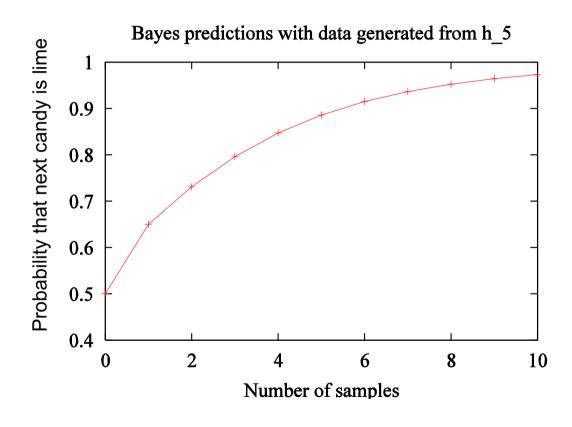
•
$$P(\mathbf{d}|\mathbf{h}_1) = 0$$

Posterior





Prediction



Bayesian Learning

- Bayesian learning properties:
 - **Optimal** (i.e., given prior, no other prediction is correct more often than the Bayesian one)
 - No overfitting (all hypotheses weighted and considered)
- There is a price to pay:
 - When hypothesis space is large Bayesian learning may be intractable
 - i.e., sum (or integral) over hypotheses often intractable
- Solution: approximate Bayesian learning

Maximum a posteriori (MAP)

- Idea: make prediction based on most probable hypothesis h_{MAP}
 - $h_{MAP} = argmax_{h_i} P(h_i | \mathbf{d})$
 - $P(X|\mathbf{d}) \approx P(X|h_{MAP})$

 In contrast, Bayesian learning makes prediction based on all hypotheses weighted by their probability

Candy Example (MAP)

- Prediction after
 - 1 lime: $h_{MAP} = h_3$, $Pr(lime|h_{MAP}) = 0.5$
 - 2 limes: $h_{MAP} = h_4$, $Pr(lime|h_{MAP}) = 0.75$
 - 3 limes: $h_{MAP} = h_5$, $Pr(lime|h_{MAP}) = 1$
 - 4 limes: $h_{MAP} = h_5$, $Pr(lime|h_{MAP}) = 1$
 - **-** ...

• After only 3 limes, it correctly selects h₅

Candy Example (MAP)

- But what if correct hypothesis is h_4 ?
 - h_4 : P(lime) = 0.75 and P(cherry) = 0.25

- After 3 limes
 - MAP incorrectly predicts h₅
 - MAP yields $P(lime|h_{MAP}) = 1$
 - Bayesian learning yields $P(\text{lime}|\mathbf{d}) = 0.8$

MAP properties

- MAP prediction less accurate than Bayesian prediction since it relies only on **one** hypothesis h_{MAP}
- But MAP and Bayesian predictions converge as data increases
- Controlled overfitting (prior can be used to penalize complex hypotheses)
- Finding h_{MAP} may be intractable:
 - $h_{MAP} = \operatorname{argmax} P(h|\mathbf{d})$
 - Optimization may be difficult

MAP computation

- Optimization:
 - $h_{MAP} = \operatorname{argmax}_h P(h|\mathbf{d})$ = $\operatorname{argmax}_h P(h) P(\mathbf{d}|h)$ = $\operatorname{argmax}_h P(h) \Pi_i P(d_i|h)$

- Product induces non-linear optimization
- Take the log to linearize optimization
 - $h_{MAP} = \operatorname{argmax}_h \log P(h) + \Sigma_i \log P(d_i|h)$

Maximum Likelihood (ML)

- Idea: simplify MAP by assuming uniform prior (i.e., $P(h_i) = P(h_j) \forall i,j$)
 - $h_{MAP} = argmax_h P(h) P(\mathbf{d}|h)$
 - $h_{ML} = \operatorname{argmax}_h P(\mathbf{d}|h)$

- Make prediction based on h_{ML} only:
 - $P(X|\mathbf{d}) \approx P(X|h_{ML})$

Candy Example (ML)

- Prediction after
 - 1 lime: $h_{ML} = h_5$, $Pr(lime|h_{ML}) = 1$
 - 2 limes: $h_{ML} = h_5$, $Pr(lime|h_{ML}) = 1$

• ...

- Frequentist: "objective" prediction since it relies only on the data (i.e., no prior)
- Bayesian: prediction based on data and uniform prior (since no prior ≡ uniform prior)

ML properties

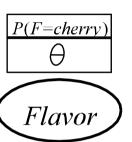
- ML prediction **less accurate** than Bayesian and MAP predictions since it ignores prior info and relies only on **one** hypothesis h_{ML}
- But ML, MAP and Bayesian predictions converge as data increases
- Subject to overfitting (no prior to penalize complex hypothesis that could exploit statistically insignificant data patterns)
- Finding h_{ML} is often easier than h_{MAP}
 - $h_{ML} = argmax_h \Sigma_i log P(d_i|h)$

Statistical Learning

- Use Bayesian Learning, MAP or ML
- Complete data:
 - When data has multiple attributes, all attributes are known
 - Easy
- Incomplete data:
 - When data has multiple attributes, **some attributes are unknown**
 - Harder

Simple ML example

- Hypothesis h_{θ} :
 - $P(\text{cherry}) = \theta \& P(\text{lime}) = 1 \theta$
- Data **d**:
 - c cherries and l limes



- ML hypothesis:
 - θ is relative frequency of observed data
 - $\theta = c/(c+1)$
 - P(cherry) = c/(c+1) and P(lime)= l/(c+1)

ML computation

• 1) Likelihood expression

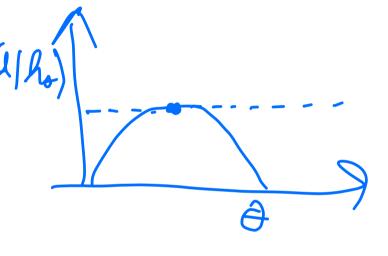
•
$$P(\mathbf{d}|\mathbf{h}_{\theta}) = \theta^{c} (\mathbf{1} - \theta)^{l}$$

• 2) log likelihood

•
$$\log P(\mathbf{d}|\mathbf{h}_{\theta}) = c \log \theta + l \log (1-\theta)$$

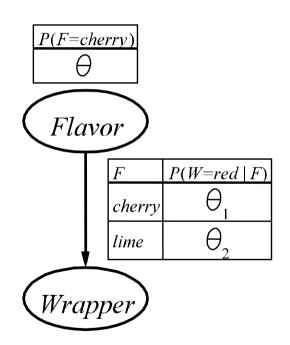
- 3) log likelihood derivative
 - $d(\log P(\mathbf{d}|h_{\theta}))/d\theta = c/\theta l/(1-\theta)$
- 4) ML hypothesis

•
$$c/\theta - l/(1-\theta) = o \rightarrow \theta = c/(c+l)$$



More complicated ML example

- Hypothesis: $h_{\theta,\theta_1,\theta_2}$
- Data:
 - c cherries
 - g_c green wrappers
 - r_c red wrappers
 - l limes
 - g_l green wrappers
 - r₁ red wrappers



ML computation

- 1) Likelihood expression
- **-** ...
- 4) ML hypothesis

•
$$c/\theta - l/(1-\theta) = o \rightarrow \theta = c/(c+l)$$

•
$$r_c/\theta_1 - g_c/(1-\theta_1) = o \rightarrow \theta_1 = r_c/(r_c+g_c)$$

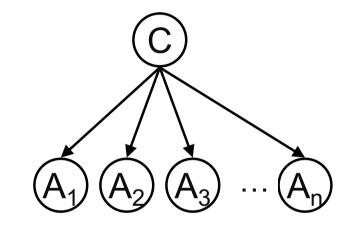
•
$$r_l/\theta_2$$
 - $g_l/(1-\theta_2) = 0 \rightarrow \theta_2 = r_l/(r_l+g_l)$

Laplace Smoothing

- An important case of overfitting happens when there is no sample for a certain outcome
 - E.g., no cherries eaten so far
 - $P(cherry) = \theta = c/(c+1) = o$
 - Zero probabilities are dangerous: they rule out outcomes
- Solution: Laplace (add-one) smoothing
 - Add 1 to all counts
 - $P(cherry) = \theta = (c+1)/(c+l+2) > 0$
 - Much better results in practice

Naïve Bayes model

- Want to predict a class C based on attributes A_i
- Parameters:
 - $\theta = P(C=true)$
 - $\theta_{i1} = P(A_i = true | C = true)$
 - $\theta_{i2} = P(A_i = true | C = false)$



Assumption: A_i's are independent given C

Naïve Bayes model for Restaurant Problem

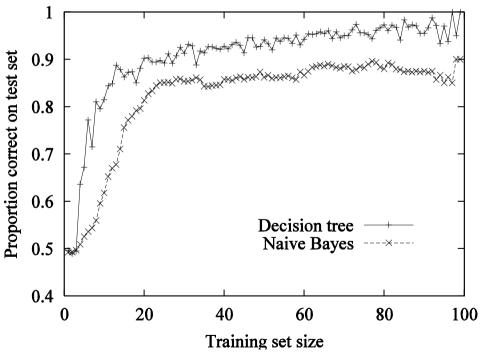
Data:

Example	Attributes										Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	T	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	T	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	T

- Maximum likelihood:
 - θ = relative frequencies of *wait* and *~wait*
 - θ_{i1} , θ_{i2} = relative frequencies of each attribute value given *wait* and *~wait*

Naïve Bayes Model vs Decision Trees

Wait prediction for restaurant problem



Why is naïve
Bayes less
accurate than
decision tree?

Bayesian Network Parameter Learning (Max Likelihood)

- Parameters $\theta_{V,pa(V)=v}$:
 - CPTs: $\theta_{V,pa(V)=v} = P(V|pa(V)=v)$
- Data **d**:
 - $d_1 : \langle V_1 = V_{1,1}, V_2 = V_{2,1}, ..., V_n = V_{n,1} \rangle$
 - d_2 : $\langle V_1 = V_{1,2}, V_2 = V_{2,2}, ..., V_n = V_{n,2} \rangle$
 - **...**
- Maximum likelihood:
 - Set $\theta_{V,pa(V)=v}$ to the relative frequencies of the values of V given the values v of the parents of V

$$\theta_{V,pa(V)=\mathbf{v}} = \#(V,pa(V)=\mathbf{v}) / \#(pa(V)=\mathbf{v})$$

