# Lecture 1: Course Introduction CS486/686 Intro to Artificial Intelligence

2023-5-9

Pascal Poupart
David R. Cheriton School of Computer Science



#### **Outline**

- Introduction to Artificial Intelligence
- Course website and logistics



#### **Instructors**

Pascal Poupart (Professor and CIFAR AI Chair)











• What is **AI**?



- What is **AI**?
- What is intelligence?



- What is **AI**?
- What is intelligence?

Webster says: a. the capacity to acquire and apply knowledge. b. the faculty of thought and reason.



- What is **AI**?
- What is intelligence?

Webster says: a. the capacity to acquire and apply knowledge. b. the faculty of thought and reason.

• What features/abilities do humans (animals? animate objects?) have that are indicative or characteristic of intelligence?



- What is **AI**?
- What is intelligence?

Webster says: a. the capacity to acquire and apply knowledge. b. the faculty of thought and reason.

• What features/abilities do humans (animals? animate objects?) have that are indicative or characteristic of intelligence?

 abstract concepts, mathematics, language, problem solving, memory, logical reasoning, emotions, morality, ability to learn/adapt, etc...



# Some Definitions (Russell & Norvig)

The exciting new effort to make computers that think... machines with minds in the full and literal sense [Haugeland 85]

[The automation of] activities that we associate with human thinking, such as decision making, problem solving, learning [Bellman 78]

The study of computations that make it possible to

perceive, reason and act [Winston 92]

The study of mental faculties through the use of

computational models [Charniak & McDermott 85]

The art of creating machines that perform functions that require intelligence when performed by a human [Kurzweil 90]

The study of how to make computers do things at which, at the moment, people are better [Rich&Knight 91]

A field of study that seeks to explain and emulate intelligent behavior in terms of computational processes [Schalkoff 90]

The branch of computer science that is concerned with the automation of intelligent behavior [Luger&Stubblefield93]



## Some Definitions (Russell & Norvig)

Systems that think like humans

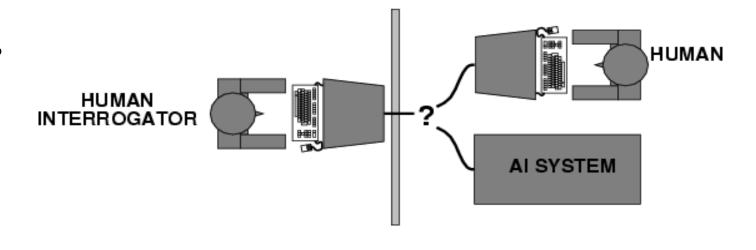
Systems that think rationally

Systems that act like humans

Systems that act rationally



- Systems that think like humans
  - Cognitive science
  - Fascinating area, but we will not be covering it in this course




- Systems that think like humans
  - Cognitive science
  - Fascinating area, but we will not be covering it in this course
- Systems that think rationally
  - Aristotle: What are the correct thought processes
  - Systems that reason in a logical manner
  - Systems doing inference correctly



- Systems that behave like humans
  - Turing (1950) "Computing machinery and intelligence"
  - Predicted that by 2000

     a computer would have a
     30% chance of fooling a lay person for 5 minutes



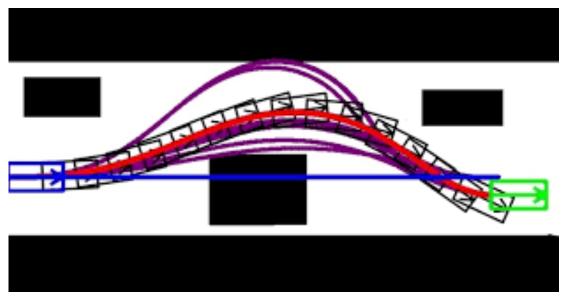
- Anticipated all major arguments against AI in the following 50 years
- Suggested major components of AI: knowledge, reasoning, language understanding, learning

- Systems that act rationally
  - Rational behavior: "doing the right thing"
  - Rational agent approach
    - Agent: entity that perceives and acts
    - Rational agent: acts so to achieve best outcome



- Systems that act rationally
  - Rational behavior: "doing the right thing"
  - Rational agent approach
    - Agent: entity that perceives and acts
    - Rational agent: acts so to achieve best outcome
- This is the approach we will take in this course
  - General principles of rational agents
  - Components for constructing rational agents

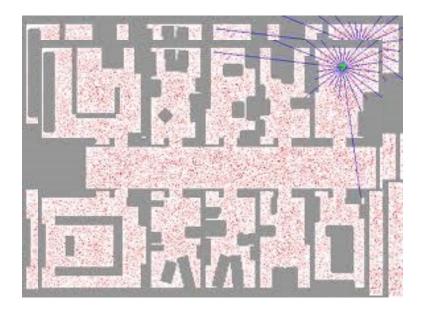



### Topics we will cover

- Search
  - Uninformed and heuristic search
  - Constraint satisfaction problems
- Reasoning under uncertainty
  - Probability theory, utility theory and decision theory
  - Probabilistic inference, causal inference
  - Bayesian networks, decision networks, Markov decision processes
- Learning
  - Decision trees, statistical learning, neural networks,
  - Reinforcement learning, bandits, causal learning
- Multiagent systems
  - Game theory, multi-agent reinforcement learning



#### Search


| 7 |   | 1 |   |   | 3 |   | 6 | 8 |
|---|---|---|---|---|---|---|---|---|
|   | 6 | 3 | 2 | 5 |   |   |   |   |
| 8 |   |   |   |   | 6 | 5 |   | 3 |
|   |   |   | 8 |   | 9 |   | 7 |   |
| 2 |   |   | 1 |   | 4 |   |   | 9 |
|   | 9 |   | 5 |   | 7 |   |   |   |
| 1 |   | 8 | 4 |   |   |   |   | 6 |
|   |   |   |   | 8 | 2 | 1 | 4 |   |
| 5 | 3 |   | 6 |   |   | 9 |   | 2 |

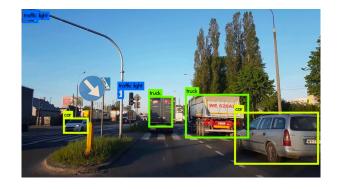


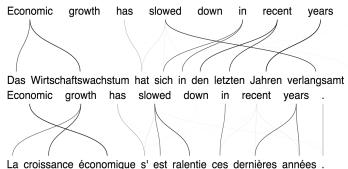
wavelab.uwaterloo.ca

# **Reasoning Under Uncertainty**









## **Machine Learning**

- Traditional computer science
  - Program computer for every task



- New paradigm
  - Provide examples to machine
  - Machine learns to accomplish tasks based on examples





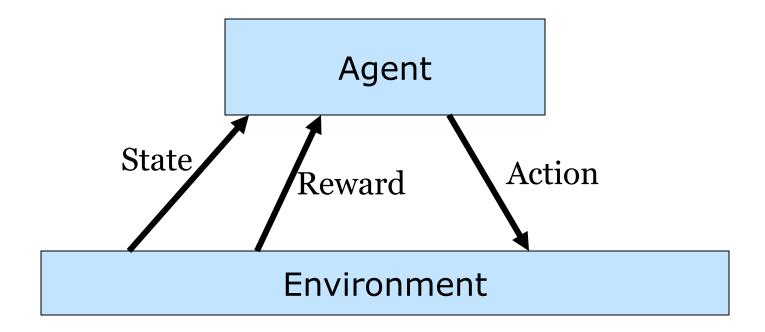


# **Three Categories**



Supervised learning




Reinforcement learning



Unsupervised learning



## **Reinforcement Learning Problem**



**Goal:** Learn to choose actions that maximize rewards



# **Animal Psychology**

- Negative reinforcements:
  - Pain and hunger
- Positive reinforcements:
  - Pleasure and food
- Reinforcements used to train animals



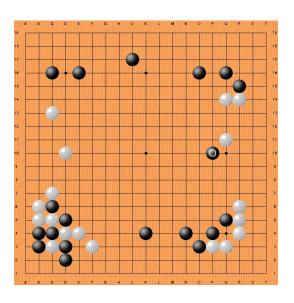
Let's do the same with computers!



# **Game Playing**

 Example: Go (one of the oldest and hardest board games)

Agent: player


• Environment: opponent

• State: board configuration

• **Action:** next stone location

• **Reward:** +1 win / -1 loose





2016: AlphaGo defeats top player Lee Sedol (4-1) Game 2 move 37: AlphaGo plays unexpected move (odds 1/10,000)



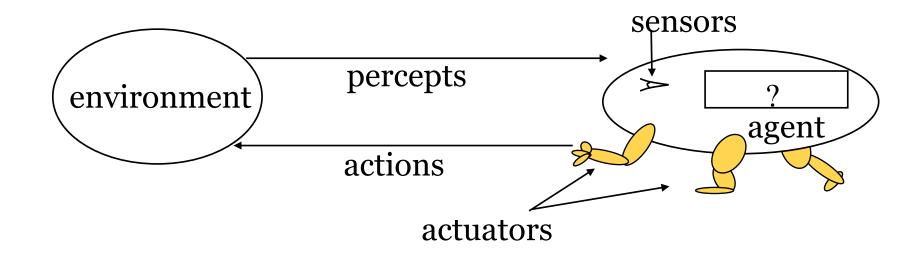
# A brief history of Al

- 1943-1955: Initial work in AI
  - McCulloch and Pitts produce Boolean model of the brain
  - Turing's "Computing machinery and intelligence"
- Early 1950's: Early AI programs
  - Samuel's checker program, Newell and Simon's Logic Theorist, Gerlenter's Geometry Engine
- 1956: Happy birthday AI!
  - Dartmouth workshop attended by McCarthy, Minsky, Shannon, Rochester, Samuel, Solomonoff, Selfridge, Simon and Newell



## A brief history of Al

- 1950's-1969: Enthusiasm and expectations
  - Many successes (in a limited way)
  - LISP, time sharing, resolution method, neural networks, vision, planning, learning theory, Shakey, machine translation,...
- 1966-1973: Reality hits
  - Early programs had little knowledge of their subject matter
    - Machine translation
  - Computational complexity
  - Negative result about perceptrons a simple form of neural network




# A brief history of Al

- 1969-1979: Knowledge-based systems
- 1980-1988: Expert system industry booms
- 1988-1993: Expert system busts, AI Winter
- 1986-2000: The return of neural networks
- 2000-present: Increase in technical depth
  - Probabilities, statistics, optimization, utility theory, game theory, learning theory
- 2010-present: Big data, deep neural networks



## **Agents and Environments**



Agents include humans, robots, softbots, thermostats...

The agent function maps percepts to actions  $f: P \rightarrow A$ 

The agent program runs on the physical architecture to produce *f* 

## **Rational Agents**

- Recall: a rational agent "does the right thing"
- Performance measure success criteria
  - Evaluates a sequence of environment states
- A rational agent chooses whichever action that maximizes the expected value of its performance measure given the percept sequence to date
  - Need to know performance measure, environment, actions, percept sequence
- Rationality ≠ omniscience, perfection, success
- Rationality → exploration, learning, autonomy



#### **PEAS**

- Specify the task environment:
  - Performance measure, Environment, Actuators, Sensors

**Example: Autonomous Taxi** 

Performance Measure: Safety, destination, legality...

**Environment**: Streets, traffic, pedestrians, weather...

**Actuators**: Steering, brakes, accelarator, horn...

**Sensors**: GPS, engine sensors, video...



## **Properties of task environments**

- Fully observable vs. partially observable
- Deterministic vs. stochastic
- Episodic vs. sequential
- Static vs. dynamic
- Discrete vs. continuous
- Single agent vs. multiagent

**Hardest case:** Partially observable, stochastic, sequential, dynamic, continuous and multiagent. (Real world)



# **Examples**

| Solitaire           | Computer Go         | Recommender system      | Autonomous driving      |  |
|---------------------|---------------------|-------------------------|-------------------------|--|
| Fully<br>Observable | Fully<br>Observable | Partially<br>Observable | Partially<br>Observable |  |
| Deterministic       | Deterministic       | Stochastic              | Stochastic              |  |
| Sequential          | Sequential          | Episodic                | Sequential              |  |
| Static              | Static              | Dynamic                 | Dynamic                 |  |
| Discrete            | Discrete            | Discrete                | Continuous              |  |
| Single agent        | Multiagent          | Multiagent              | Multiagent              |  |



## **Many Applications**

- credit card fraud detection
- medical assistive technologies
- information retrieval, question answering, conversational agents
- speech recognition, natural language processing
- scheduling, logistics, etc.
- aircraft, pipeline inspection
- Mars rovers, driverless cars
- and, of course, cool robots

