
CS486/686 Spring 2023 Assignment 4:

Reinforcement Learning

Out: July 10, 2023 Due: July 21, 2023 (11.59 pm)
Submit an electronic copy of your assignment via LEARN. Late

submissions incur a 2% penalty for every rounded up hour past the
deadline. For example, an assignment submitted 5 hours and 15 min
late will receive a penalty of ceiling(5.25) * 2% = 12%. Assignments
submitted more than 50 hours late will not be marked.

This assignment is divided into three parts. The first part will be about Dy-
namic Programming methods, the second part will be about tabular Q-learning
and the third part will be about Deep Q-learning.

1 Dynamic Programming Methods

You will program value iteration and policy iteration for Markov Decision pro-
cesses in Python in the first part. More specifically, fill in the functions in the
skeleton code of the file MDP.py. The file TestMDP.py contains the simple
MDP example from Lecture 16 Slides 21-22. You can verify that your code
compiles properly with TestMDP.py by running “python TestMDP.py”. Add
print statements to this file to verify that the output of each function makes
sense.

Installs: Numpy (make sure to install using ‘pip install numpy’). Python
3.6 is recommended, though the code should work with the later versions of
python as well.

Submit a report containing the following:

1. Your Python code (worth 10%).

2. Test your code with the maze problem described in TestMDP.py.

(a) Report the policy, value function and number of iterations needed
by value iteration when using a tolerance of 0.01 and starting from a
value function set to 0 for all states (worth 10%).

(b) Report the policy, value function and number of iterations needed
by policy iteration to find an optimal policy when starting from the
policy that chooses action 0 in all states (worth 10%).

1



2 Tabular Q-learning

You will program the Q-learning algorithm in Python. More specifically, fill in
the functions in the skeleton code of the file RL.py. This file requires the file
MDP.py that you programmed for Part 1, so make sure to include it in the
same directory. The file TestRL.py contains a simple RL problem to test your
functions (i.e. the output of each function will be printed to the screen). You
can verify that your code compiles properly by running “python TestRL.py”.

Installs: Same as Part 1.
Submit a report containing the following:

1. Your Python code (worth 10%).

2. Test your code with the maze problem described in TestRL.py (same maze
problem as in Part 1). Produce a graph where the x-axis indicates the
episode (from 0 to 200) and the y-axis indicates the average (based on 100
trials) of the cumulative discounted rewards per episode (100 steps). The
graph should contain 4 curves corresponding to the exploration probabil-
ity epsilon=0.05, 0.1, 0.3 and 0.5. The initial state is 0 and the initial
Q-function is 0 for all state-action pairs. Explain the impact of the ex-
ploration probability epsilon on the cumulative discounted rewards per
episode earned during training as well as the resulting Q-values and pol-
icy (worth 20%).

3 Deep Q-learning

In this part, you will train a deep Q-network to solve the CartPole problem
from Open AI Gym. This problem has a large state space that prevents the use
of a tabular representation. Instead, you will use a neural network to represent
the Q-function. Follow these steps to get started:

1. Get familiar with the CartPole problem. Read a brief description of the
CartPole problem from Open AI Gym.

2. For this part of the assignment, you will use a PyTorch implementation
of DQN. See the link for an explanation of different parts of the code.

3. Run the code in the file “main.py” to solve the CartPole problem with a
Deep Q-Network.

Installs: Instructions available as comments in main.py file.
Submit a report containing the following:

1. Your python code along with the random seeds for all the experiments in
this part.

2. Modify and run the code for CartPole DQN to produce a graph where the
y-axis is the running average of 100 episodes for the cumulative rewards

2

https://www.gymlibrary.dev/environments/classic_control/cart_pole/
https://blog.gofynd.com/building-a-deep-q-network-in-pytorch-fa1086aa5435


obtained at each episode and the x-axis is the number of episodes up
to a minimum of 20000 episodes. The graph should contain 4 curves
corresponding to updating the target network every 1, 10 (default), 30, and
100 training step(s). To reduce stochasticity in the results, report curves
that are the average of atleast 3 runs of the given code (with different
random seeds). Based on the results, explain the impact of the target
network and relate the target network to value iteration (worth 20%).

3. Modify and run the code for CartPole DQN to produce a graph where the
y-axis is the running average of 100 episodes for the cumulative rewards
obtained at each episode and the x-axis is the number of episodes up
to a minimum of 20000 episodes. The graph should contain 4 curves
corresponding to sampling mini-batches of 1, 16 (default), 30, and 200
experience(s) from the replay buffer. To reduce stochasticity in the results,
report curves that are the average of atleast 3 runs of the given code (with
different random seeds). Based on the results, explain the impact of the
replay buffer and explain the difference between using the replay buffer
and exact gradient descent (worth 20%).

3


	Dynamic Programming Methods
	Tabular Q-learning
	Deep Q-learning

