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Outline

• Decision making
– Utility Theory
– Decision Trees

• Chapter 16 in R&N
– Note: Some of the material we are covering today 

is not in the textbook
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Decision Making under Uncertainty

• I give a planning problem to a robot: I want 
coffee
– but coffee maker is broken: robot reports “No plan!”

• If I want more robust behavior – if I want 
robot to know what to do when my primary goal 
can’t be satisfied – I should provide it with 
some indication of my preferences over 
alternatives
– e.g., coffee better than tea, tea better than water, 

water better than nothing, etc.
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Decision Making under Uncertainty

• But it’s more complex:
– it could wait 45 minutes for coffee maker to be 

fixed
– what’s better: tea now? coffee in 45 minutes?
– could express preferences for <beverage,time> pairs
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Preferences

• A preference ordering ≽ is a ranking of all 
possible states of affairs (worlds) S
– these could be outcomes of actions, truth 

assignments, states in a search problem, etc.
– s ≽ t: means that state s is at least as good as t
– s ≻ t: means that state s is strictly preferred to t
– s ~ t: means that the agent is indifferent between 

states s and t
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Preferences

• If an agent’s actions are deterministic then 
we know what states will occur

• If an agent’s actions are not deterministic 
then we represent this by lotteries
– Probability distribution over outcomes
– Lottery L=[p1,s1;p2,s2;…;pn,sn]
– s1 occurs with prob p1, s2 occurs with prob p2,…
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Axioms 
• Orderability: Given 2 states A and B

– (A ≻ B) v (B ≻ A) v (A ~ B)
• Transitivity: Given 3 states, A, B, and C

– (A ≻ B)  (B ≻ C)  (A ≻ C)
• Continuity: 

– A ≻ B ≻ C  p [p,A;1-p,C] ~ B
• Substitutability:

– A~B  [p,A;1-p,C] ~ [p,B;1-p,C]
• Monotonicity:

– A ≻ B  (p  q  [p,A;1-p,B] ≽ [q,A;1-q,B])
• Decomposibility:

– [p,A;1-p,[q,B;1-q,C]] ~ [p,A;(1-p)q,B; (1-p)(1-q),C]
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Why Impose These Conditions?
• Structure of preference 

ordering imposes certain 
“rationality requirements” (it is a 
weak ordering)

• E.g., why transitivity?
– Suppose you (strictly) prefer coffee 

to tea, tea to OJ, OJ to coffee
– If you prefer X to Y, you’ll trade me 

Y plus $1 for X
– I can construct a “money pump” and 

extract arbitrary amounts of money 
from you

≻

≻

≻

Best

Worst
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Decision Problems: Certainty
• A decision problem under certainty is:

– a set of decisions D
• e.g., paths in search graph, plans, actions, etc.

– a set of outcomes or states S
• e.g., states you could reach by executing a plan

– an outcome function f : D →S
• the outcome of any decision

– a preference ordering ≽ over S

• A solution to a decision problem is any d*∊ D 
such that f(d*) ≽ f(d) for all d∊D
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Decision Making under Uncertainty

• Suppose actions don’t have deterministic outcomes
– e.g., when robot pours coffee, it spills 20% of time, making a 

mess
– preferences: c, ~mess ≻ ~c,~mess ≻ ~c, mess

• What should robot do?
– decision getcoffee leads to a good outcome and a bad outcome 

with some probability
– decision donothing leads to a medium outcome for sure

• Should robot be optimistic? pessimistic?
• Really odds of success should influence decision

– but how?

getcoffee
c, ~mess

~c, mess

donothing ~c, ~mess
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Utilities
• Rather than just ranking outcomes, we must 

quantify our degree of preference
– e.g., how much more important is c than ~mess

• A utility function U:S →ℝ associates a real-
valued utility with each outcome.
– U(s) measures your degree of preference for s

• Note: U induces a preference ordering ≽U 
over S defined as:  s ≽U t  iff U(s) ≥ U(t)
– obviously ≽U will be reflexive and transitive
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Expected Utility

• Under conditions of uncertainty, each decision d 
induces a distribution Prd over possible 
outcomes
– Prd(s) is probability of outcome s under decision d

• The expected utility of decision d is defined





Ss

d sUsdEU )()(Pr)(
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Expected Utility

If U(c,~ms) = 10, U(~c,~ms) = 5, U(~c,ms) = 0, 
then EU(getcoffee) = (0.8)(10)+(0.2)(0)=8 
and EU(donothing) = 5

If U(c,~ms) = 10, U(~c,~ms) = 9, U(~c,ms) = 0, 
then EU(getcoffee) = (0.8)(10)+(0.2)(0)=8 
and EU(donothing) = 9

getcoffee
c, ~mess

~c, mess

donothing ~c, ~mess

When robot pours coffee, it spills 20% of time, making 
a mess
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The MEU Principle

• The principle of maximum expected utility 
(MEU) states that the optimal decision under 
conditions of uncertainty is that with the 
greatest expected utility.

• In our example
– if my utility function is the first one, my robot 

should get coffee
– if your utility function is the second one, your 

robot should do nothing
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Decision Problems: Uncertainty
• A decision problem under uncertainty is:

– a set of decisions D
– a set of outcomes or states S
– an outcome function Pr : D →Δ(S)

• Δ(S) is the set of distributions over S (e.g., Prd)

– a utility function U over S
• A solution to a decision problem under 

uncertainty is any d*∊ D such that EU(d*) ≽ 
EU(d) for all d∊D

• Again, for single-shot problems, this is trivial
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Expected Utility: Notes
• Note that this viewpoint accounts for both:

– uncertainty in action outcomes
– uncertainty in state of knowledge
– any combination of the two

s0

s1

s2a
0.8

0.2

s3

s4

b 0.3

0.7

0.7  s1

0.3  s2

0.7  t1

0.3  t2

0.7  w1

0.3  w2

a

b

Stochastic actions Uncertain knowledge
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Expected Utility: Notes
• Why MEU? Where do utilities come from?

– underlying foundations of utility theory tightly 
couple utility with action/choice

– a utility function can be determined by asking 
someone about their preferences for actions in 
specific scenarios (or “lotteries” over outcomes)

• Utility functions needn’t be unique
– if I multiply U by a positive constant, all decisions 

have same relative utility
– if I add a constant to U, same thing
– U is unique up to positive affine transformation
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So What are the Complications?
• Outcome space is large

– like all of our problems, states spaces can be huge
– don’t want to spell out distributions like Prd explicitly
– Soln: Bayes nets (or related: influence diagrams)

• Decision space is large
– usually our decisions are not one-shot actions
– rather they involve sequential choices (like plans)
– if we treat each plan as a distinct decision, decision 

space is too large to handle directly
– Soln: use dynamic programming methods to construct

optimal plans (actually generalizations of plans, called 
policies… like in game trees)



CS486/686 Lecture Slides (c) 2017 P.Poupart

19

A Simple Example
• Suppose we have two actions: a, b
• We have time to execute two actions in sequence
• This means we can do either:

– [a,a], [a,b], [b,a], [b,b]
• Actions are stochastic: action a induces 

distribution Pra(si | sj) over states
– e.g., Pra(s2 | s1) = .9 means prob. of moving to state s2

when a is performed at  s1 is .9
– similar distribution for action b

• How good is a particular sequence of actions?
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Distributions for Action Sequences

s1

s13s12s3s2

a b

.9 .1 .2 .8

s4 s5

.5 .5
s6 s7

.6 .4

a b

s8 s9

.2 .8
s10 s11

.7 .3

a b

s14 s15

.1 .9
s16 s17

.2 .8

a b

s18 s19

.2 .8
s20 s21

.7 .3

a b
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Distributions for Action Sequences

• Sequence [a,a] gives distribution over “final states”
– Pr(s4) = .45, Pr(s5) = .45, Pr(s8) = .02, Pr(s9) = .08

• Similarly:
– [a,b]: Pr(s6) = .54, Pr(s7) = .36, Pr(s10) = .07, Pr(s11) = .03
– and similar distributions for sequences [b,a] and [b,b]

s1

s13s12s3s2

a b

.9 .1 .2 .8

s4 s5

.5 .5
s6 s7

.6 .4

a b

s8 s9

.2 .8
s10 s11

.7 .3

a b

s14 s15

.1 .9
s16 s17

.2 .8

a b

s18 s19

.2 .8
s20 s21

.7 .3

a b
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How Good is a Sequence?
• We associate utilities with the “final” outcomes

– how good is it to end up at s4, s5, s6, …
– note: we could assign utilities to the intermediate 

states s2, s3, s12, and s13 also. We ignore this for 
now. Technically, think of utility u(s4) as utility of 
entire trajectory or sequence of states we pass 
through.

• Now we have:
– EU(aa) = .45u(s4)  + .45u(s5) + .02u(s8) + .08u(s9)
– EU(ab) = .54u(s6)  + .36u(s7) + .07u(s10) + .03u(s11)
– etc…
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Why Sequences might be bad

• Suppose we do a first; we could reach s2 or s3:
– At s2, assume: EU(a) = .5u(s4) + .5u(s5) > EU(b) = .6u(s6) + .4u(s7)
– At s3: EU(a) = .2u(s8) + .8u(s9) < EU(b) = .7u(s10) + .3u(s11) 

• After doing a first, we want to do a next if we reach s2, 
but we want to do b second if we reach s3

s1

s13s12s3s2

a b

.9 .1 .2 .8

s4 s5

.5 .5
s6 s7

.6 .4

a b

s8 s9

.2 .8
s10 s11

.7 .3

a b

s14 s15

.1 .9
s16 s17

.2 .8

a b

s18 s19

.2 .8
s20 s21

.7 .3

a b
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Policies
• This suggests that we want to consider policies, 

not sequences of actions (plans)
• We have eight policies for this decision tree:

[a; if s2 a, if s3 a] [b; if s12 a, if s13 a]
[a; if s2 a, if s3 b] [b; if s12 a, if s13 b]
[a; if s2 b, if s3 a] [b; if s12 b, if s13 a]
[a; if s2 b, if s3 b] [b; if s12 b, if s13 b]

• Contrast this with four “plans”
– [a; a],  [a; b],  [b; a],  [b; b]
– note: we can only gain by allowing decision maker to 

use policies
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Evaluating Policies
• Number of plans (sequences) of length k

– exponential in k:   |A|k if A is our action set
• Number of policies is even much larger

– if we have n=|A| actions and m=|O| outcomes per 
action, then we have (nm)k policies

• Fortunately, dynamic programming can be used
– e.g., suppose EU(a) > EU(b) at s2
– never consider a policy that does anything else at s2

• How to do this?
– back values up the tree
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Decision Trees
• Squares denote choice nodes

– these denote action choices by 
decision maker (decision nodes)

• Circles denote chance nodes
– these denote uncertainty 

regarding action effects
– “nature” will choose the child 

with specified probability
• Terminal nodes labeled with 

utilities
– denote utility of “trajectory” 

(branch) to decision maker

s1a b

.9 .1 .2 .8

5 2 4 3
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Evaluating Decision Trees

• Back values up the tree
– U(t) is defined for all terminals (part of input)
– U(n) = expectation {U(c) : c a child of n} if n is a 

chance node
– U(n) = max {U(c) : c a child of n} if n is a choice node

• At any choice node (state), the decision maker 
chooses action that leads to highest utility child
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Evaluating a Decision Tree
• U(n3) = .9*5 + .1*2
• U(n4) = .8*3 + .2*4
• U(s2) = max{U(n3), U(n4)}

– decision a or b 
(whichever is max)

• U(n1) = .3U(s2) + .7U(s3)
• U(s1) = 

max{U(n1), U(n2)}
– decision: max of a, b

s2

n3
a b

.9 .1

5 2

n4
.8 .2

3 4

s1

n1
a b

.3 .7
n2

s3
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Decision Tree Policies
• Note that we don’t 

just compute values, 
but policies for the 
tree

• A policy assigns a 
decision to each choice 
node in tree

• Some policies can’t be distinguished in terms of 
there expected values
– e.g., if policy chooses a at node s1, choice at s4 doesn’t 

matter because it won’t be reached
– Two policies are implementationally indistinguishable if 

they disagree only at unreachable decision nodes
• reachability is determined by policy themselves

s2

n3
a b

n4

s1

n1
a b

.3 .7
n2

s3 s4

a bab
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Computational Issues
• Savings compared to explicit policy evaluation is 

substantial

• Evaluate only O((nm)d ) nodes in tree of depth d
– total computational cost is thus O((nm)d ) 

• Note that there are (nm)d policies and
– evaluating a single policy explicitly requires 

substantial computation: O(md ) 
– total computation for explicitly evaluating each policy 

would be O(ndm2d ) !!!

• Tremendous value to dynamic programming 
solution
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Computational Issues
• Tree size: grows exponentially with depth
• Possible solution:

– heuristic search procedures (like A*)

• Full observability: we must know the initial 
state and outcome of each action

• Possible solutions:
– handcrafted decision trees for certain initial state 

uncertainty
– more general policies based on observations
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Other Issues
• Specification: suppose each state is an 

assignment to variables; then representing 
action probability distributions is complex 
(and branching factor could be immense)

• Possible solutions:
– represent distribution using Bayes nets
– solve problems using decision networks (or 

influence diagrams)


