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Outline

• Review probabilistic inference, 
independence and conditional 
independence

• Bayesian networks
– What are they
– What do they mean
– How do we create them
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Probabilistic Inference

• By probabilistic inference, we mean
– given a prior distribution over variables of 

interest, representing degrees of belief
– and given new evidence for some variable 
– Revise your degrees of belief: posterior

• How do your degrees of belief change as a result 
of learning (or more generally , for 
set )
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Semantics of Conditioning

normalizing constant 4
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Issues
• How do we specify the full joint distribution 

over a set of random variables ?
– Exponential number of possible worlds
– e.g., if the are Boolean, then numbers (or 

parameters, since they sum to )
– These numbers are not robust/stable

• Inference is frightfully slow
– Must sum over exponential number of worlds to 

answer query or to condition on 
evidence to determine 
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Small Example: 3 Variables

cold ~cold

headache 0.108 0.012

~headache 0.016 0.064

cold ~cold

headache 0.072 0.008

~headache 0.144 0.576

sunny ~sunny
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Is there anything we can do?

• How do we avoid these two problems?
– no solution in general
– but in practice there is structure we can exploit

• We’ll use conditional independence
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Independence

• Recall that and are independent iff:

• Intuitively, learning the value of doesn’t 
influence our  beliefs about and vice versa.
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Conditional Independence

• Two variables and are conditionally 
independent given variable 

• If you know the value of (whatever it is), 
nothing you learn about will influence your 
beliefs about 
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What good is independence?

• Suppose (say, Boolean) variables are 
mutually independent
– We can specify full joint distribution using only n 

parameters (linear) instead of (exponential)

• How? Simply specify 
– From this we can recover the probability of any world 

or any (conjunctive) query easily
• Recall 

and and 
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Example
• 4 independent Boolean random vars
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The Value of Independence
• Complete independence reduces both 

representation of joint distribution and inference
from to !!

• Unfortunately, such complete mutual 
independence is very rare. Most realistic domains 
do not exhibit this property.

• Fortunately, most domains do exhibit a fair 
amount of conditional independence. We can 
exploit conditional independence for 
representation and inference as well.

• Bayesian networks do just this
12
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An Aside on Notation
for variable (or set of variables) refers to the 

(marginal) distribution over . refers to family of 
conditional distributions over , one for each .

• Distinguish between -- which is a distribution – and 
or (or for non-Boolean vars) -- which are 

numbers. Think of as a function that accepts any 
as an argument and returns .

• Think of as a function that accepts any and and 
returns . Note that is not a single 
distribution; rather it denotes the family of distributions 
(over ) induced by the different 
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Exploiting Conditional 
Independence

• Consider a story:
– If Pascal woke up too early , Pascal probably needs 

coffee ; if Pascal needs coffee, he's likely grumpy . 
If he is grumpy then it’s possible that the lecture 
won’t go smoothly . If the lecture does not go 
smoothly then the students will likely be sad . 

E C L SG

E – Pascal woke up too early    G – Pascal is grumpy   S – Students are sad
C – Pascal needs coffee     L– The lecture did not go smoothly
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Conditional Independence

• If you learned any of , or , would your 
assessment of change? 
– If any of these are seen to be true, you would 

increase and decrease . 
– So is not independent of , or , or , or .

• If you knew the value of (true or false), would 
learning the value of , or influence ?
– Influence that these factors have on is mediated by 

their influence on .
– Students aren’t sad because Pascal was grumpy, they 

are sad because of the lecture. 
– So is independent of , and , given

E C L SG
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Conditional Independence

• So is independent of , and , and , given
• Similarly:

is independent of , and , given
is independent of , given

• This means that:

and    don’t “simplify”

E C L SG
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Conditional Independence

• By the chain rule (for any instantiation of ):

• By our independence assumptions:

• We can specify the full joint by specifying five 
local conditional distributions:

; ; ; ; and 

E C L SG
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Example Quantification

• Specifying the joint requires only 9 parameters 
(if we note that half of these are “1 minus” the 
others), instead of 31 for explicit representation
– linear in number of vars instead of exponential!
– linear generally if dependence has a chain structure

E C L SG
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Inference is Easy

• Want to know ? Use sum out rule:

E C L SG
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These are all terms specified in our local distributions!
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Inference is Easy

• Computing in more concrete terms:

~c)
as well

E C L SG
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Bayesian Networks

• The structure above is a Bayesian network. 
– Graphical representation of the direct dependencies 

over a set of variables + a set of conditional probability 
tables (CPTs) quantifying the strength of those 
influences.

• Bayes nets generalize the above ideas in very 
interesting ways, leading to effective means of 
representation and inference under uncertainty.
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Bayesian Networks 
aka belief networks, probabilistic networks

• A BN over variables consists of:
– a DAG whose nodes are the variables
– a set of CPTs   ( ) for each  

A

C

B
P(a)
P(~a)

P(b)
P(~b)

P(c|a,b)     P(~c|a,b)
P(c|~a,b)   P(~c|~a,b)
P(c|a,~b)   P(~c|a,~b)
P(c|~a,~b) P(~c|~a,~b) 22
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Bayesian Networks 
aka belief networks, probabilistic networks

• Key notions 
– parents of a node: 
– children of node
– descendants of a node
– ancestors of a node
– family: set of nodes consisting of and its parents

• CPTs are defined over families in the BN 

A

C

B

D 23
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An Example Bayes Net
• A few CPTs are 

“shown”
• Explicit joint 

requires 
params

• BN requires only 
params (the 

number of entries 
for each CPT is 
listed)
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Semantics of a Bayes Net
• The structure of the BN means: every is 

conditionally independent of all of its 
non-descendants given its parents:

for any subset 
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Semantics of Bayes Nets
• If we ask for 

– assuming an ordering consistent with the network 

• By the chain rule, we have: 

• Thus, the joint is recoverable using the 
parameters (CPTs) specified in an arbitrary BN
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Constructing a Bayes Net
• Given any distribution over variables 

, we can construct a Bayes net that 
faithfully represents that distribution.

Take any ordering of the variables (say, the order given), 
and go through the following procedure for down to . 
Let be any subset such that is 
independent of given . Such a subset 
must exist (convince yourself). Then determine the parents 
of in the same way, finding a similar , 
and so on. In the end, a DAG is produced and the BN 
semantics must hold by construction.
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Causal Intuitions
• The construction of a BN is simple

– works with arbitrary orderings of variable set
– but some orderings are much better than others!
– generally, if ordering/dependence structure reflects 

causal intuitions, a more natural, compact BN results

• In this BN, we’ve used 
the ordering Mal, Cold, 
Flu, Aches to build BN 
for distribution P for 
Aches
– Variable can only have 

parents that come earlier 
in the ordering
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Causal Intuitions
• Suppose we build the BN for distribution P 

using the opposite ordering
– i.e., we use ordering Aches, Cold, Flu, Malaria
– resulting network is more complicated!

• Mal depends on Aches; 
but it also depends on 
Cold, Flu given Aches
– Cold, Flu explain away Mal 

given Aches
• Flu depends on Aches; 

but also on Cold given
Aches

• Cold depends on Aches
29
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Compactness

1+1+1+8=11 numbers 1+2+4+8=15 numbers

In general, if each random variable is directly 
influenced by at most k others, then each CPT will be 
at most ݇. Thus the entire network of variables is 
specified by ݇.
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Testing Independence
• Given BN, how do we determine if two variables , 

are independent (given evidence )?
– we use a (simple) graphical property

• D-separation: A set of variables d-separates
and if it blocks every undirected path in the BN 
between and .

• and are conditionally independent given 
evidence if  d-separates and 
– thus BN gives us an easy way to tell if two variables are 

independent (set ) or cond. independent
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Blocking in D-Separation
• Let be an undirected path from to in a 

BN. Let be an evidence set. We say blocks 
path iff there is some node on the path such 
that:

– Case 1: one arc on goes into and one goes out of 
, and ; or

– Case 2: both arcs on leave , and ; or

– Case 3: both arcs on enter and neither , nor any 
of its descendants, are in .
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Blocking: Graphical View

33
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D-Separation: Intuitions
1. Subway and 

Thermometer?

2.Aches and 
Fever?

3.Aches and 
Thermometer?

4.Flu and Malaria?

5.Subway and 
ExoticTrip?
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D-Separation: Intuitions
• Subway and Therm are dependent; but are independent 
given Flu (since Flu blocks the only path)

• Aches and Fever are dependent; but are independent 
given Flu (since Flu blocks the only path). Similarly for 
Aches and Therm (dependent, but indep. given Flu).

• Flu and Mal are indep. (given no evidence): Fever blocks 
the path, since it is not in evidence, nor is its descendant 
Therm.  Flu, Mal are dependent given Fever (or given 
Therm): nothing blocks path now.

• Subway, ExoticTrip are indep.; they are dependent given 
Therm; they are indep. given Therm and Malaria. This 
for exactly the same reasons for Flu/Mal above.
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