Probabilistic Reasoning [RN2] Sections 14.1, 14.2 [RN3] Sections 14.1, 14.2

University of Waterloo CS 486/686
Lecture 7: May 23, 2017

Outline

- Review probabilistic inference, independence and conditional independence
- Bayesian networks
- What are they
- What do they mean
- How do we create them

Probabilistic Inference

- By probabilistic inference, we mean
- given a prior distribution $\operatorname{Pr}(\boldsymbol{X})$ over variables \boldsymbol{X} of interest, representing degrees of belief
- and given new evidence $E=e$ for some variable E
- Revise your degrees of belief: posterior $\operatorname{Pr}(\boldsymbol{X} \mid E=e)$
- How do your degrees of belief change as a result of learning $E=e$ (or more generally $E=e$, for set E)

Semantics of Conditioning

$\operatorname{Pr}(\boldsymbol{X} \mid E=e)$

$$
\alpha=1 /\left(p_{1}+p_{2}\right)
$$

$$
\text { normalizing constant } 4
$$

Issues

- How do we specify the full joint distribution over a set of random variables $X_{1}, X_{2}, \ldots, X_{n}$?
- Exponential number of possible worlds
- e.g., if the X_{i} are Boolean, then 2^{n} numbers (or 2^{n} 1 parameters, since they sum to 1)
- These numbers are not robust/stable
- Inference is frightfully slow
- Must sum over exponential number of worlds to answer query $\operatorname{Pr}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ or to condition on evidence e to determine $\operatorname{Pr}\left(X_{1}, X_{2}, \ldots, X_{n} \mid E=e\right)$

Small Example: 3 Variables

sunny			~sunny		
	cold	\sim cold		cold	\sim cold
headache	0.108	0.012	headache	0.072	0.008
~headache	0.016	0.064	\sim headache	0.144	0.576

$$
\operatorname{Pr}(\text { headache })=0.108+0.012+0.072+0.008=0.2
$$

$\operatorname{Pr}($ headache \wedge cold \mid sunny $)=\operatorname{Pr}($ headache \wedge cold \wedge sunny $) / \operatorname{Pr}($ sunny $)$

$$
=0.108 /(0.108+0.012+0.016+0.064)=0.54
$$

$\operatorname{Pr}($ headache \wedge cold $\mid \sim$ sunny $)=\operatorname{Pr}($ headache \wedge cold $\wedge \sim$ sunny $) / \operatorname{Pr}(\sim$ sunny $)$

$$
=0.072 /(0.072+0.008+0.144+0.576)=0.09
$$

Is there anything we can do?

- How do we avoid these two problems?
- no solution in general
- but in practice there is structure we can exploit
- We'll use conditional independence

Independence

- Recall that X and Y are independent iff:

$$
\begin{aligned}
& \operatorname{Pr}(X=x)=\operatorname{Pr}(X=x \mid Y=y) \\
& \Leftrightarrow \operatorname{Pr}(Y=y)=\operatorname{Pr}(Y=y \mid X=x) \\
& \Leftrightarrow \operatorname{Pr}(X=x, Y=y)=\operatorname{Pr}(X=x) \operatorname{Pr}(Y=y) \\
& \forall x \in \operatorname{dom}(X), y \in \operatorname{dom}(Y)
\end{aligned}
$$

- Intuitively, learning the value of Y doesn' \dagger influence our beliefs about X and vice versa.

Conditional Independence

- Two variables X and Y are conditionally independent given variable Z

$$
\begin{aligned}
& \operatorname{Pr}(X=x \mid Z=z)=\operatorname{Pr}(X=x \mid Y=y, Z=z) \\
& \Leftrightarrow \operatorname{Pr}(Y=y \mid Z=z)=\operatorname{Pr}(Y=y \mid X=x, Z=z) \\
& \Leftrightarrow \operatorname{Pr}(X=x, Y=y \mid Z=z)=\operatorname{Pr}(X=x \mid Z=z) \operatorname{Pr}(Y=y \mid Z=z) \\
& \forall x \in \operatorname{dom}(X), y \in \operatorname{dom}(Y), z \in \operatorname{dom}(Z)
\end{aligned}
$$

- If you know the value of Z (whatever it is), nothing you learn about Y will influence your beliefs about X

What good is independence?

- Suppose (say, Boolean) variables $X_{1}, X_{2}, \ldots, X_{n}$ are mutually independent
- We can specify full joint distribution using only n parameters (linear) instead of $2^{n}-1$ (exponential)
- How? Simply specify $\operatorname{Pr}\left(x_{1}\right), \ldots, \operatorname{Pr}\left(x_{n}\right)$
- From this we can recover the probability of any world or any (conjunctive) query easily
- Recall $\operatorname{Pr}(x, y)=\operatorname{Pr}(x) \operatorname{Pr}(y)$ and $\operatorname{Pr}(x \mid y)=\operatorname{Pr}(x)$ and $\operatorname{Pr}(y \mid x)=\operatorname{Pr}(y)$

Example

- 4 independent Boolean random vars $X_{1}, X_{2}, X_{3}, X_{4}$

$$
\operatorname{Pr}\left(x_{1}\right)=0.4, \operatorname{Pr}\left(x_{2}\right)=0.2, \operatorname{Pr}\left(x_{3}\right)=0.5, \operatorname{Pr}\left(x_{4}\right)=0.8
$$

$$
\begin{aligned}
\operatorname{Pr}\left(x_{1}, \sim x_{2}, x_{3}, x_{4}\right) & =\operatorname{Pr}\left(x_{1}\right)\left(1-\operatorname{Pr}\left(x_{2}\right)\right) \operatorname{Pr}\left(x_{3}\right) \operatorname{Pr}\left(x_{4}\right) \\
& =(0.4)(0.8)(0.5)(0.8) \\
& =0.128
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left(x_{1}, x_{2}, x_{3} \mid x_{4}\right) & =\operatorname{Pr}\left(x_{1}\right) \operatorname{Pr}\left(x_{2}\right) \operatorname{Pr}\left(x_{3}\right) 1 \\
& =(0.4)(0.2)(0.5)(1) \\
& =0.04
\end{aligned}
$$

The Value of Independence

- Complete independence reduces both representation of joint distribution and inference from $O\left(2^{n}\right)$ to $O(n)!$!
- Unfortunately, such complete mutual independence is very rare. Most realistic domains do not exhibit this property.
- Fortunately, most domains do exhibit a fair amount of conditional independence. We can exploit conditional independence for representation and inference as well.
- Bayesian networks do just this

An Aside on Notation

- $\operatorname{Pr}(X)$ for variable X (or set of variables) refers to the (marginal) distribution over $X . \operatorname{Pr}(X \mid Y)$ refers to family of conditional distributions over X, one for each $y \in \operatorname{Dom}(Y)$.
- Distinguish between $\operatorname{Pr}(X)$-- which is a distribution - and $\operatorname{Pr}(x)$ or $\operatorname{Pr}(\sim x)$ (or $\operatorname{Pr}\left(x_{i}\right)$ for non-Boolean vars) -- which are numbers. Think of $\operatorname{Pr}(X)$ as a function that accepts any $x_{i} \in$ $\operatorname{Dom}(X)$ as an argument and returns $\operatorname{Pr}\left(x_{i}\right)$.
- Think of $\operatorname{Pr}(X \mid Y)$ as a function that accepts any x_{i} and y_{k} and returns $\operatorname{Pr}\left(x_{i} \mid y_{k}\right)$. Note that $\operatorname{Pr}(X \mid Y)$ is not a single distribution; rather it denotes the family of distributions (over X) induced by the different $y_{k} \in \operatorname{Dom}(Y)$

Exploiting Conditional Independence

- Consider a story:
- If Pascal woke up too early E, Pascal probably needs coffee C; if Pascal needs coffee, he's likely grumpy G. If he is grumpy then it's possible that the lecture won't go smoothly L. If the lecture does not go smoothly then the students will likely be sad S.

E-Pascal woke up too early G-Pascal is grumpy S-Students are sad C - Pascal needs coffee L - The lecture did not go smoothly

Conditional Independence (E) \longrightarrow (C) \longrightarrow (\rightarrow (S)

- If you learned any of E, C, G, or L, would your assessment of $\operatorname{Pr}(S)$ change?
- If any of these are seen to be true, you would increase $\operatorname{Pr}(s)$ and decrease $\operatorname{Pr}(\sim s)$.
- So S is not independent of E, or C, or G, or L.
- If you knew the value of L (true or false), would learning the value of E, C, or G influence $\operatorname{Pr}(S)$?
- Influence that these factors have on S is mediated by their influence on L.
- Students aren't sad because Pascal was grumpy, they are sad because of the lecture.
- So S is independent of E, C, and G, given L

Conditional Independence

- So S is independent of E, and C, and G, given L
- Similarly:
- S is independent of E, and C, given G
- G is independent of E, given C
- This means that:

$$
\begin{aligned}
& \operatorname{Pr}(S \mid L,\{G, C, E\})=\operatorname{Pr}(S \mid L) \\
& \operatorname{Pr}(L \mid G,\{C, E\})=\operatorname{Pr}(L \mid G) \\
& \operatorname{Pr}(G \mid C,\{E\})=\operatorname{Pr}(G \mid C) \\
& \operatorname{Pr}(C \mid E) \text { and } \operatorname{Pr}(E) \text { don't "simplify" }
\end{aligned}
$$

Conditional Independence

- By the chain rule (for any instantiation of $S \ldots E$):

$$
\begin{aligned}
& \operatorname{Pr}(S, L, G, C, E) \\
& =\operatorname{Pr}(S \mid L, G, C, E) \operatorname{Pr}(L \mid G, C, E) \operatorname{Pr}(G \mid C, E) \operatorname{Pr}(C \mid E) \operatorname{Pr}(E)
\end{aligned}
$$

- By our independence assumptions:

$$
\operatorname{Pr}(S, L, G, C, E)=\operatorname{Pr}(S \mid L) \operatorname{Pr}(L \mid G) \operatorname{Pr}(G \mid C) \operatorname{Pr}(C \mid E) \operatorname{Pr}(E)
$$

- We can specify the full joint by specifying five local conditional distributions:

$$
\operatorname{Pr}(S \mid L) ; \operatorname{Pr}(L \mid G) ; \operatorname{Pr}(G \mid C) ; \operatorname{Pr}(C \mid E) ; \text { and } \operatorname{Pr}(E)
$$

Example Quantification

- Specifying the joint requires only 9 parameters (if we note that half of these are "1 minus" the others), instead of 31 for explicit representation
- linear in number of vars instead of exponential!
- linear generally if dependence has a chain structure ${ }_{18}$

Inference is Easy

- Want to know $\operatorname{Pr}(g)$? Use sum out rule:

$$
\begin{aligned}
P(g) & =\sum_{c_{i} \in \operatorname{Dom}(C)}^{\operatorname{Pr}}\left(g \mid c_{i}\right) \operatorname{Pr}\left(c_{i}\right) \\
& =\sum_{c_{i} \in \operatorname{Dom}(C)}^{\operatorname{Pr}\left(g \mid c_{i}\right) \sum_{e_{i} \in \operatorname{Dom}(E)} \operatorname{Pr}\left(c_{i} \mid e_{i}\right) \operatorname{Pr}\left(e_{i}\right)}
\end{aligned}
$$

These are all terms specified in our local distributions!

Inference is Easy

- Computing $\operatorname{Pr}(g)$ in more concrete terms:

$$
\begin{aligned}
& \operatorname{Pr}(c)=\operatorname{Pr}(c \mid e) \operatorname{Pr}(e)+\operatorname{Pr}(c \mid \sim e) \operatorname{Pr}(\sim e) \\
& =0.8 * 0.7+0.5 * 0.3=0.78 \\
& \operatorname{Pr}(\sim c)=\operatorname{Pr}(\sim c \mid e) \operatorname{Pr}(e)+\operatorname{Pr}(\sim c \mid \sim e) \operatorname{Pr}(\sim e)=0.22 \\
& \operatorname{Pr}(\sim c)=1-\operatorname{Pr}(c) \text {, as well } \\
& \operatorname{Pr}(g)=\operatorname{Pr}(g \mid c) \operatorname{Pr}(c)+\operatorname{Pr}(g \mid \sim c) \operatorname{Pr}(\sim c) \\
& =0.3 * 0.78+1.0 * 0.22=0.454 \\
& \operatorname{Pr}(\sim g)=1-\operatorname{Pr}(g)=0.546
\end{aligned}
$$

Bayesian Networks

- The structure above is a Bayesian network.
- Graphical representation of the direct dependencies over a set of variables + a set of conditional probability tables (CPTs) quantifying the strength of those influences.
- Bayes nets generalize the above ideas in very interesting ways, leading to effective means of representation and inference under uncertainty.

Bayesian Networks

 aka belief networks, probabilistic networks- A BN over variables $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ consists of:
- a DAG whose nodes are the variables
- a set of CPTs $\left(\operatorname{Pr}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)\right.$ for each X_{i}

Bayesian Networks

aka belief networks, probabilistic networks

- Key notions
- parents of a node: $\operatorname{Par}\left(X_{i}\right)$
- children of node
- descendants of a node
- ancestors of a node
- family: set of nodes consisting of X_{i} and its parents
- CPTs are defined over families in the BN

$$
\begin{aligned}
& \text { Parents }(C)=\{A, B\} \\
& \text { Children }(A)=\{C\} \\
& \text { Descendents }(B)=\{C, D\} \\
& \text { Ancestors }\{D\}=\{A, B, C\} \\
& \text { Family }\{C\}=\{C, A, B\}
\end{aligned}
$$

An Example Bayes $\mathrm{Ne} \dagger$

- A few CPTs are "shown"
- Explicit joint requires 2^{11} - 1
= 2047 params
- BN requires only 27 params (the number of entries for each CPT is listed)

Semantics of a Bayes Net

- The structure of the BN means: every X_{i} is conditionally independent of all of its non-descendants given its parents:

$$
\operatorname{Pr}\left(X_{i} \mid S \cup \operatorname{Par}\left(X_{i}\right)\right)=\operatorname{Pr}\left(X_{i} \mid \operatorname{Par}\left(X_{i}\right)\right)
$$

for any subset $S \subseteq$ NonDescendants $\left(X_{i}\right)$

Semantics of Bayes Nets

- If we ask for $\operatorname{Pr}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- assuming an ordering consistent with the network
- By the chain rule, we have:
$\operatorname{Pr}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
$=\operatorname{Pr}\left(x_{n} \mid x_{n-1}, \ldots, x_{1}\right) \operatorname{Pr}\left(x_{n-1} \mid x_{n-2}, \ldots, x_{1}\right) \ldots \operatorname{Pr}\left(x_{1}\right)$
$=\operatorname{Pr}\left(x_{n} \mid \operatorname{Par}\left(x_{n}\right)\right) \operatorname{Pr}\left(x_{n-1} \mid \operatorname{Par}\left(x_{n-1}\right)\right) \ldots \operatorname{Pr}\left(x_{1}\right)$
- Thus, the joint is recoverable using the parameters (CPTs) specified in an arbitrary BN

Constructing a Bayes Net

- Given any distribution over variables $X_{1}, X_{2}, \ldots, X_{n}$, we can construct a Bayes net that faithfully represents that distribution.

> Take any ordering of the variables (say, the order given), and go through the following procedure for X_{n} down to X_{1}. Let $\operatorname{Par}\left(X_{n}\right)$ be any subset $S \subseteq\left\{X_{1}, \ldots, X_{n-1}\right\}$ such that X_{n} is independent of $\left\{X_{1}, \ldots, X_{n-1}\right\}-S$ given S. Such a subset must exist (convince yourself). Then determine the parents of X_{n-1} in the same way, finding a similar $S \subseteq\left\{X_{1}, \ldots, X_{n-2}\right\}$, and so on. In the end, a DAG is produced and the BN semantics must hold by construction.

Causal Intuitions

- The construction of a BN is simple
- works with arbitrary orderings of variable set
- but some orderings are much better than others!
- generally, if ordering/dependence structure reflects causal intuitions, a more natural, compact BN results
- In this BN, we've used the ordering Mal, Cold, Flu, Aches to build BN for distribution P for Aches
- Variable can only have parents that come earlier in the ordering

Causal Intuitions

- Suppose we build the BN for distribution P using the opposite ordering
- i.e., we use ordering Aches, Cold, Flu, Malaria
- resulting network is more complicated!
- Mal depends on Aches; but it also depends on Cold, Flu given Aches
- Cold, Flu explain away Mal given Aches
- Flu depends on Aches; but also on Cold given Aches
- Cold depends on Aches

Compactness

$1+1+1+8=11$ numbers

$1+2+4+8=15$ numbers

In general, if each random variable is directly influenced by at most k others, then each CPT will be at most 2^{k}. Thus the entire network of n variables is specified by $n 2^{k}$.

Testing Independence

- Given BN , how do we determine if two variables X, Y are independent (given evidence E)?
- we use a (simple) graphical property
- D-separation: A set of variables \boldsymbol{E} d-separates X and Y if it blocks every undirected path in the BN between X and Y.
- X and Y are conditionally independent given evidence \boldsymbol{E} if \boldsymbol{E} d-separates X and Y
- thus BN gives us an easy way to tell if two variables are independent (set $E=\varnothing$) or cond. independent

Blocking in D-Separation

- Let P be an undirected path from X to Y in a BN. Let E be an evidence set. We say E blocks path P iff there is some node Z on the path such that:
- Case 1: one arc on P goes into Z and one goes out of Z, and $Z \in E$; or
- Case 2: both arcs on P leave Z, and $Z \in E$; or
- Case 3: both arcs on P enter Z and neither Z, nor any of its descendants, are in \boldsymbol{E}.

Blocking: Graphical View

(1)

If Z in evidence, the path between X and Y blocked
(2)

If Z in evidence, the path between X and Y blocked
(3)

If Z is not in evidence andno descendent of Z is in evidence, then the path between X and Y is blocked

D-Separation: Intuitions

1. Subway and Thermometer?
2. Aches and Fever?
3. Aches and Thermometer?
4.Flu and Malaria?

5. Subway and ExoticTrip?

D-Separation: Intuitions

- Subway and Therm are dependent; but are independent given Flu (since Flu blocks the only path)
- Aches and Fever are dependent; but are independent given Flu (since Flu blocks the only path). Similarly for Aches and Therm (dependent, but indep. given Flu).
- Flu and Mal are indep. (given no evidence): Fever blocks the path, since it is not in evidence, nor is its descendant Therm. Flu, Mal are dependent given Fever (or given Therm): nothing blocks path now.
- Subway, ExoticTrip are indep.; they are dependent given Therm; they are indep. given Therm and Malaria. This for exactly the same reasons for Flu/Mal above.

