Local Search [RN2] Section 4.3 [RN3] Section 4.1

CS 486/686
University of Waterloo
Lecture 5: May 15, 2017

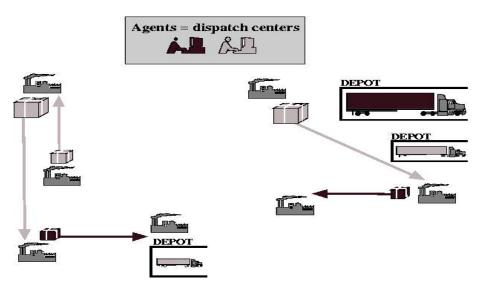
Outline

- Iterative improvement algorithms
- · Hill climbing search
- Simulated annealing
- · Genetic algorithms

Introduction

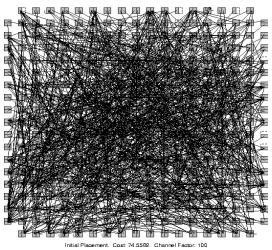
- So far we have studied algorithms which systematically explore search spaces
 - Keep one or more paths in memory
 - When the goal is found, the solution consists of a path to the goal
- · For many problems the path is unimportant

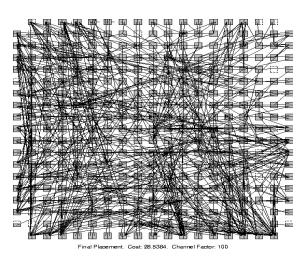
Examples



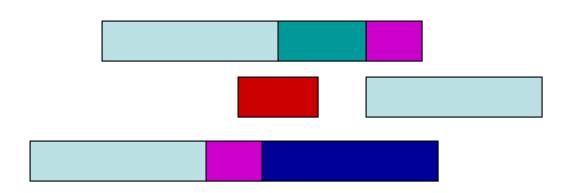
Vehicle routing

Channel Routing





Examples



Job shop scheduling

Av~BvC

 \sim A v C v D

B v D v ~E

~C v ~D v ~E

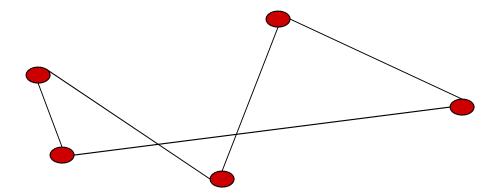
Boolean Satisfiability

. . .

Introduction

- Informal characterization
 - Combinatorial structure being optimized
 - There is a cost function to be optimized
 - · At least we want to find a good solution
 - Searching all possible states is infeasible
 - No known algorithm for finding the solution efficiently
 - Some notion of similar states having similar costs

Example - TSP



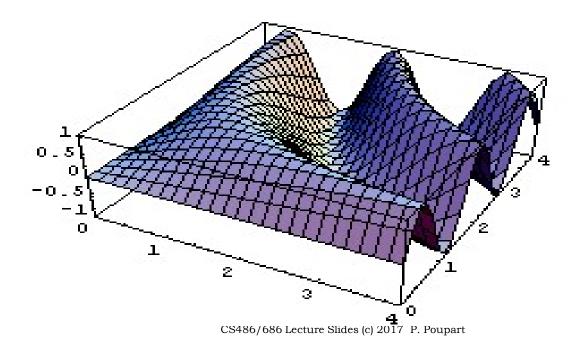
- Goal is to minimize the length of the route
- · Constructive method:
 - Start from scratch and build up a solution
- · Iterative improvement method:
 - Start with a solution and try to improve it

Constructive method

- For the optimal solution we could use A*!
 - But we do not really need to know how we got to the solution we just want the solution
 - Can be very expensive to run

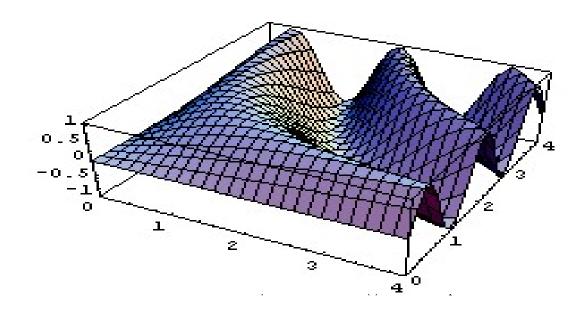
Iterative improvement methods

- Idea: Imagine all possible solutions laid out on a landscape
 - We want to find the highest (or lowest) point



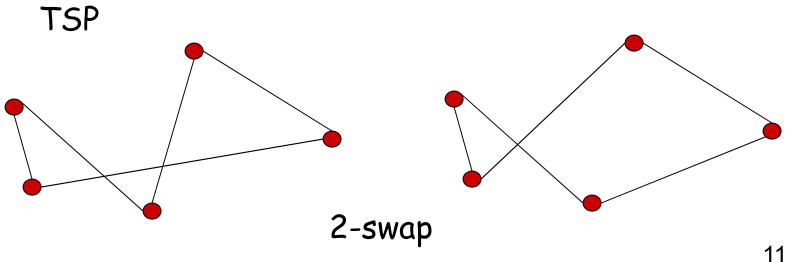
Iterative improvement methods

- 1. Start at some random point on the landscape
- 2. Generate all possible points to move to
- 3. Choose point of improvement and move to it
- 4. If you are stuck then restart



Iterative improvement methods

- What does it mean to "generate points to move to"
 - Sometimes called generating the moveset
- Depends on the application



Hill-climbing

- 1. Start at some initial configuration S
- 2. Let V = Eval(S)
- 3. Let N = MoveSet(S)
- 4. For each $X_i \in N$

Let
$$V_{max} = \max_{i} Eval(X_i)$$

and $X_{max} = argmax_i Eval(X_i)$

- 5. If $V_{max} \leq V$, return S
- 6. Let $S = X_{max}$ and $V = V_{max}$. Go to 3

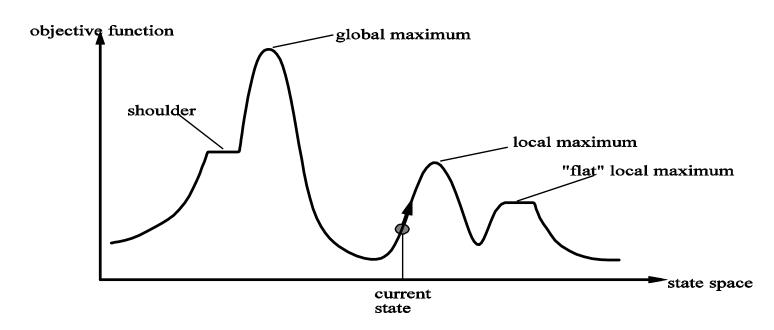
"Like trying to find the peak of Mt Everest in the fog", Russell and Norvig

Hill Climbing

- Always take a step in the direction that improves the current solution value the most
 - Greedy
- Good things about hill climbing
 - Easy to program!
 - Requires no memory of where we have been!
 - It is important to have a "good" set of moves
 - · Not too many, not too few

Hill Climbing

- Issues with hill climbing
 - It can get stuck!
 - Local maximum (local minimum)
 - Plateaus



Improving on hill climbing

Plateaus

- Allow for sideways moves, but be careful since may move sideways forever!

Local Maximum

- Random restarts: "If at first you do not succeed, try, try again"
- Random restarts works well in practice

Randomized hill climbing

- Like hill climbing except you choose a random state from the move set, and then move to it if it is better than current state. Continue until bored.

Hill climbing example: GSAT

```
A v ~B v C 1

~A v C v D 1

B v D v ~E 0

~C v ~D v ~E 1

~A v ~C v E 1
```

Configuration A=1, B=0, C=1, D=0, E=1

Goal is to maximize the number of satisfied clauses: Eval(config)=# satisfied clauses

GSAT Move_Set: Flip any 1 variable

WALKSAT (Randomized GSAT)

Pick a random unsatisfied clause;

Consider flipping each variable in the clause

If any improve Eval, then accept the best

If none improve Eval, then with prob p pick the move that is least bad; prob (1-p) pick a random one

Simulated Annealing

- Is hill climbing complete?
 - No: it never makes downhill moves
 - Can get stuck at local maxima (minima)
- Is a random walk complete?
 - Yes: it will eventually find a solution
 - But it is very inefficient

New Idea:

Allow the algorithm to make some "bad" moves in order to escape local maxima.

Simulated annealing

- 1. Let S be the initial configuration and V = Eval(S)
- 2. Let i be a random move from the moveset and let S_i be the next configuration, $V_i = Eval(S_i)$
- 3. If $V < V_i$ then $S = S_i$ and $V = V_i$
- 4. Else with probability p, $S = S_i$ and $V = V_i$
- 5. Goto 2 until you are bored

Simulated annealing

- How should we choose the probability of accepting a "bad" move?
 - Idea 1: p = 0.1 (or some other fixed value)?
 - Idea 2: Probability that decreases with time?
 - Idea 3: Probability that decreases with time and as $V-V_i$ increases?

Selecting moves in simulated annealing

- If new value V_i is better than old value V then definitely move to new solution
- If new value V_i is worse than old value V then move to new solution with probability

$$Exp(-(V-V_i)/T)$$

Boltzmann distribution: T>0 is a parameter called temperature. It starts high and decreases over time towards 0

If T is close to 0 then the probability of making a bad move is almost 0

Properties of simulated annealing

- If T is decreased slowly enough then simulated annealing is guaranteed (in theory) to reach best solution
 - Annealing schedule is critical
- When T is high: Exploratory phase (random walk)
- When T is low: Exploitation phase (randomized hill climbing)

Genetic Algorithms

- Problems are encoded into a representation which allows certain operations to occur
 - Usually use a bit string
 - The representation is key needs to be thought out carefully
- An encoded candidate solution is an individual
- Each individual has a fitness which is a numerical value associated with its quality of solution
- A population is a set of individuals
- Populations change over generations by applying operations to them

Typical genetic algorithm

- Initialize: Population P consists of N random individuals (bit strings)
- Evaluate: for each $x \in P$, compute fitness(x)
- Loop
 - For i = 1 to N do
 - Choose 2 parents each with probability proportional to fitness scores
 - Crossover the 2 parents to produce a new bit string (child)
 - · With some small probability mutate child
 - Add child to the population
- · Until some child is fit enough or you get bored
- Return the best child in the population according to fitness function

Crossover

- Consists of combining parts of individuals to create new individuals
- Choose a random crossover point
 - Cut the individuals there and swap the pieces

101 0101

011 | 1110

Cross over

011 0101

101 | 1110

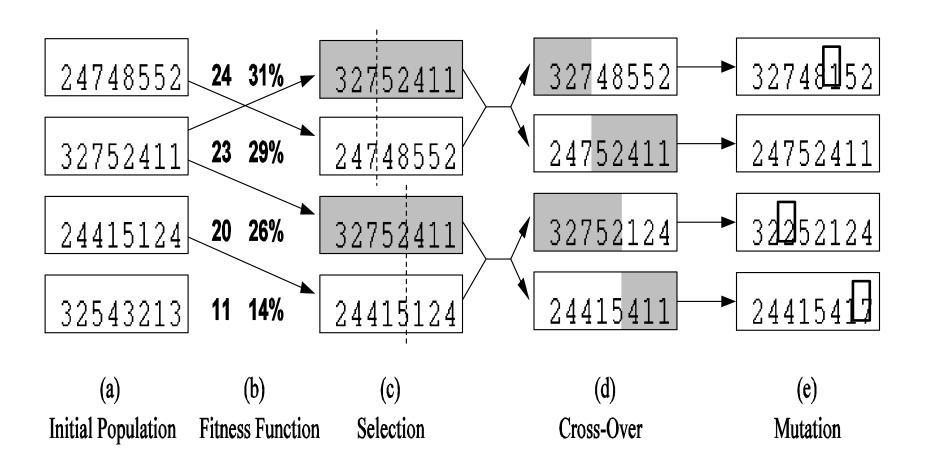
Implementation: use a crossover mask m Given two parents a and b the offsprings are $(a \land m) \lor (b \land \sim m)$ and $(a \land \sim m) \lor (b \land m)$

Mutation

- Mutation allows us to generate desirable features that are not present in the original population
- Typically mutation just means flipping a bit in the string

100111 mutates to 100101

Genetic Algorithms



Genetic algorithms and search

- Why are genetic algorithms a type of search?
 - States: possible solutions
 - Operators: mutation, crossover, selection
 - Parallel search: since several solutions are maintained in parallel
 - Hill-climbing on the fitness function
 - Mutation and crossover allow us to get out of local optima

Discussion of local search

- Useful for optimization problems!
- · Often the second best way to solve a problem
 - If you can, use A* or linear programming or...
 - But local search is easy to program ©
- Hill climbing always moves in the (locally) best direction
 - Can get stuck, but random restarts can be really effective
- Simulated annealing allows moves downhill