
CS486/686 Lecture Slides (c) 2017 P. Poupart

1

Constraint Satisfaction
[RN2] Sec 5.1-5.2
[RN3] Sec 6.1-6.3

CS 486/686
Lecture 4: May 10, 2017
University of Waterloo

CS486/686 Lecture Slides (c) 2017 P. Poupart

2

Outline

• What are CSPs?
• Standard search and CSPs
• Improvements

– Backtracking
– Backtracking + heuristics
– Forward checking

CS486/686 Lecture Slides (c) 2017 P. Poupart

3

Introduction

• In the last couple of lectures we have been
solving problems by searching in a space of
states
– Treating states as black boxes, ignoring any

structure inside them
– Using problem-specific routines

• Today we study problems where the state
structure is important

CS486/686 Lecture Slides (c) 2017 P. Poupart

4

• States: all arrangements
of 0,1,…, or 8 queens on the
board

• Initial state: 0 queens on
the board

• Successor function: Add a
queen to the board

• Goal test: 8 queens on the
board with no two of them
attacking each other

64x63x…57 ≈ 3x1014 states

CS486/686 Lecture Slides (c) 2017 P. Poupart

5

• States: all arrangements k
queens (0  k  8), one per
column in the leftmost k
columns, with no queen
attacking another

• Initial state: 0 queens on
the board

• Successor function: Add a
queen to the leftmost
empty column such that it is
not attacked

• Goal test: 8 queens on the
board

2057 States

CS486/686 Lecture Slides (c) 2017 P. Poupart

6

Introduction

• Earlier search methods studied often make
choices in an arbitrary order

• In many problems the same state can be
reached independent of the order in which
the moves are chosen (commutative actions)

• Can we solve problems efficiently by being
smart in the order in which we take actions?

CS486/686 Lecture Slides (c) 2017 P. Poupart

7

4-queens
Constraint Propagation

Place a queen in a square

Remove conflicting squares from
consideration

CS486/686 Lecture Slides (c) 2017 P. Poupart

8

4-queens
Constraint Propagation

Place a queen in a square

Remove conflicting squares from
consideration

CS486/686 Lecture Slides (c) 2017 P. Poupart

9

4-queens
Constraint Propagation

Place a queen in a square

Remove conflicting squares from
consideration

CS486/686 Lecture Slides (c) 2017 P. Poupart

10

4-queens
Constraint Propagation

Place a queen in a square

Remove conflicting squares from
consideration

CS486/686 Lecture Slides (c) 2017 P. Poupart

11

CSP Definition

• A constraint satisfaction problem (CSP) is
defined by where

1 2 ݊ is a set of variables
1 ݊ is the set of domains, ݅ is the

domain of possible values for variable ݅

1 is the set of constraints
• Each constraint involves some subset of the variables and

specifies the allowable combinations of values for that
subset

CS486/686 Lecture Slides (c) 2017 P. Poupart

12

CSP Definition
• A state is an assignment of values to some or

all of the variables

• An assignment is consistent if it does not
violate any constraints

• A solution is a complete, consistent
assignment (“hard constraints”)
– Some CSPs also require an objective function to be

optimized (“soft constraints”)

CS486/686 Lecture Slides (c) 2017 P. Poupart

13

Example 1: 8-Queens
• 64 variables , to , to
• Domain of each variable is
• Constraints

݆݅  ݅݇ for all
݆݅  ݆݇ for all

– Similar constraint for diagonals
– ݅, ݆ ݆݅

Binary constraints
relate two variables

CS486/686 Lecture Slides (c) 2017 P. Poupart

14

Example 2 – 8 queens
• 8 variables , to
• Domain of each variable is
• Constraints

݅ for all
– Similar constraints for diagonals

CS486/686 Lecture Slides (c) 2017 P. Poupart

15

Example 3 - Map Coloring

 7 variables
 Each variable has the same domain:

 No two adjacent variables have the same value:
    
   

WA

NT

SA

Q

NSW
V

T

WA

NT

SA

Q

NSW
V

T

T
WA

NT

SA

Q

NSW

V

Constraint graph

CS486/686 Lecture Slides (c) 2017 P. Poupart

16

Example 4 - Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

Who owns the Zebra?Who owns the Zebra?
Who drinks Water?

Example from R and N, Annotations from Stanford CS121

CS486/686 Lecture Slides (c) 2017 P. Poupart

17

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

(Ni = English)  (Ci = Red)

(Ni = Japanese)  (Ji = Painter)

(N1 = Norwegian)

left as an exercise

(Ci = White)  (Ci+1 = Green)
(C5  White)
(C1  Green)

Example from R and N, Annotations from Stanford CS121

CS486/686 Lecture Slides (c) 2017 P. Poupart

18

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

(Ni = English)  (Ci = Red)

(Ni = Japanese)  (Ji = Painter)

(N1 = Norwegian)

(Ci = White)  (Ci+1 = Green)
(C5  White)
(C1  Green)

unary constraints

Example from R and N, Annotations from Stanford CS121

CS486/686 Lecture Slides (c) 2017 P. Poupart

19

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

i,j[1,5], ij, Ni  Nj

i,j[1,5], ij, Ci  Cj
...

Example from R and N, Annotations from Stanford CS121

CS486/686 Lecture Slides (c) 2017 P. Poupart

20

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left  N1 = Norwegian
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk  D3 = Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

Example from R and N, Annotations from Stanford CS121

CS486/686 Lecture Slides (c) 2017 P. Poupart

21

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house  C1  Red
The Spaniard has a Dog  A1  Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left  N1 = Norwegian
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk  D3 = Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice  J3  Violinist
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

Example from R and N, Annotations from Stanford CS121

CS486/686 Lecture Slides (c) 2017 P. Poupart

22

Example 5 - Scheduling

Four tasks , , , and are related by time
constraints:

• 1 must be done during 3
• 2 must be achieved before 1 starts
• 2 must overlap with 3
• 4 must start after 1 is complete

 Are the constraints compatible?
 What are the possible time relations between two
tasks?
 What if the tasks use resources in limited supply?

CS486/686 Lecture Slides (c) 2017 P. Poupart

23

Example 6 - 3-Sat

• Boolean variables,

• constraints of the form where
is either true or false

• NP-complete

CS486/686 Lecture Slides (c) 2017 P. Poupart

24

Properties of CSPs

• Types of variables
– Discrete and finite

• Map colouring, 8-queens, boolean CSPs
– Discrete variables with infinite domains

• Scheduling jobs in a calendar
• Require a constraint language 1  2

– Continuous domains
• Scheduling on the Hubble telescope
• Linear programming

CS486/686 Lecture Slides (c) 2017 P. Poupart

25

Properties of CSPs
• Types of constraints

– Unary constraint relates a single variable to a value

– Binary constraint relates two variables

• Can use a constraint graph to represent CSPs with only
binary constraints

– Higher order constraints involve three of more
variables

1 ݊

• Can use a constraint hypergraph to represent the problem

CS486/686 Lecture Slides (c) 2017 P. Poupart

26

CSPs and search
• variables
• Valid assignment: for

  such that values satisfy constraints
on the variables

• States: valid assignments
• Initial state: empty assignment
• Successor:

1 1 ௞ ݇  1 1 ݇ ݇ ௞ାଵ ௞ାଵ

• Goal test: complete assignment
• If all domains have size , then there are

complete assignments

CS486/686 Lecture Slides (c) 2017 P. Poupart

27

CSPs and commutativity
• CSPs are commutative!

– The order of application of any given set of actions
has no effect on the outcome

– When assigning values to variables we reach the
same partial assignment, no matter the order

– All CSP search algorithms generate successors by
considering possible assignments for only a single
variable at each node in the search tree

CS486/686 Lecture Slides (c) 2017 P. Poupart

28

CSPs and commutativity
• 3 variables
• Let the current assignment be

1 1

• Pick variable
• Let domain of be
• The successors of A are

1 1 3

1 1 3

1 1 3

CS486/686 Lecture Slides (c) 2017 P. Poupart

29

Backtracking Search

Depth first search which chooses values for one variable at a time

Backtracks when a variable has no legal values to assign

CS486/686 Lecture Slides (c) 2017 P. Poupart

30

Backtracking

T
WA

NT

SA

Q

NSW
V

0

CS486/686 Lecture Slides (c) 2017 P. Poupart

31

Backtracking

T
WA

NT

SA

Q

NSW
V

0

WA=blue WA=greenWA=red

CS486/686 Lecture Slides (c) 2017 P. Poupart

32

Backtracking

T
WA

NT

SA

Q

NSW
V

0

WA=blue WA=greenWA=red

NT=red NT=greenNT=blue

CS486/686 Lecture Slides (c) 2017 P. Poupart

33

Backtracking

T
WA

NT

SA

Q

NSW
V

0

WA=blue WA=greenWA=red

NT=red NT=green

SA=green

NT=blue

SA=redSA=blue

CS486/686 Lecture Slides (c) 2017 P. Poupart

34

Backtracking and efficiency
• Backtracking search is an uninformed search

method
– Not very efficient

• We can do better by thinking about the
following questions
– Which variable should be assigned next?
– In which order should its values be tried?
– Can we detect inevitable failure early (and avoid

the same failure in other paths)?

CS486/686 Lecture Slides (c) 2017 P. Poupart

35

Most constrained variable
• Choose the variable which has the fewest

“legal” moves
– AKA minimum remaining values (MRV) heuristic

ܰܶ

ܣܵ

ݏݎ݄݁ݐ݋

ܣܵ

ܳ

ݏݎ݄݁ݐ݋

CS486/686 Lecture Slides (c) 2017 P. Poupart

36

Most constraining variable
• Most constraining variable:

– choose the variable with the most constraints on
remaining variables

• Tie-breaker among most constrained variables

SA is involved in 5 constraints

CS486/686 Lecture Slides (c) 2017 P. Poupart

37

Least-constraining value

• Given a variable, choose the least constraining
value:
– the one that rules out the fewest values in the

remaining variables

CS486/686 Lecture Slides (c) 2017 P. Poupart

38

Forward checking

• The third question was
– Is there a way to detect failure early?

• Forward checking
– Keep track of remaining legal values for unassigned

variables
– Terminate search when any variable has no legal

values

CS486/686 Lecture Slides (c) 2017 P. Poupart

39

Forward Checking in Map Coloring

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB

T
WA

NT

SA

Q

NSW

V

CS486/686 Lecture Slides (c) 2017 P. Poupart

40

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R RGB RGB RGB RGB RGB RGB

T
WA

NT

SA

Q

NSW

V

Forward Checking in Map Coloring

Forward checking removes the value Red of NT and of SA

CS486/686 Lecture Slides (c) 2017 P. Poupart

41

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R GB G RGB RGB GB RGB

Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

CS486/686 Lecture Slides (c) 2017 P. Poupart

42

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

CS486/686 Lecture Slides (c) 2017 P. Poupart

43

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

Forward Checking in Map Coloring
Empty set: the current assignment

  

does not lead to a solution

CS486/686 Lecture Slides (c) 2017 P. Poupart

44

Example: 4 Queens

X1

{1,2,3,4}

X2

{1,2,3,4}

X3

{1,2,3,4}

X4

{1,2,3,4}

1

2

3

4

1 2 3 4

CS486/686 Lecture Slides (c) 2017 P. Poupart

45

Example: 4 Queens

X1

{1,2,3,4}

X2

{1,2,3,4}

X3

{1,2,3,4}

X4

{1,2,3,4}

1

2

3

4

1 2 3 4

CS486/686 Lecture Slides (c) 2017 P. Poupart

46

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , ,3,4}

X3

{ ,2, ,4}

X4

{ ,2,3, }

1

2

3

4

1 2 3 4

CS486/686 Lecture Slides (c) 2017 P. Poupart

47

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , ,3,4}

X3

{ ,2, ,4}

X4

{ ,2,3, }

1

2

3

4

1 2 3 4

CS486/686 Lecture Slides (c) 2017 P. Poupart

48

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , ,3,4}

X3

{ , , , }

X4

{ ,2, , }

1

2

3

4

1 2 3 4

No possibilities for X3, backtrack trying different value for X2

CS486/686 Lecture Slides (c) 2017 P. Poupart

49

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , ,3,4}

X3

{ ,2, ,4}

X4

{ ,2,3, }

1

2

3

4

1 2 3 4

CS486/686 Lecture Slides (c) 2017 P. Poupart

50

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , ,3,4}

X3

{ ,2, ,}

X4

{ ,,3, }

1

2

3

4

1 2 3 4

CS486/686 Lecture Slides (c) 2017 P. Poupart

51

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , ,3,4}

X3

{ ,2, ,}

X4

{ ,,3, }

1

2

3

4

1 2 3 4

CS486/686 Lecture Slides (c) 2017 P. Poupart

52

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , ,3,4}

X3

{ ,2, ,}

X4

{ ,,, }

1

2

3

4

1 2 3 4

No possibilities for X4, backtrack trying different value for X1

CS486/686 Lecture Slides (c) 2017 P. Poupart

53

Example: 4 Queens

X1

{1,2,3,4}

X2

{ 1, 2,3,4}

X3

{ 1,2,3,4}

X4

{ 1,2,3,4}

1

2

3

4

1 2 3 4

CS486/686 Lecture Slides (c) 2017 P. Poupart

54

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , , ,4}

X3

{ 1, ,3, }

X4

{ 1, ,3,4}

1

2

3

4

1 2 3 4

CS486/686 Lecture Slides (c) 2017 P. Poupart

55

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , , ,4}

X3

{ 1, ,3, }

X4

{ 1, ,3,4}

1

2

3

4

1 2 3 4

CS486/686 Lecture Slides (c) 2017 P. Poupart

56

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , , ,4}

X3

{ 1, , , }

X4

{ 1, ,3, }

1

2

3

4

1 2 3 4

CS486/686 Lecture Slides (c) 2017 P. Poupart

57

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , , ,4}

X3

{ 1, , , }

X4

{ 1, ,3, }

1

2

3

4

1 2 3 4

CS486/686 Lecture Slides (c) 2017 P. Poupart

58

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , , ,4}

X3

{ 1, , , }

X4

{ , , 3,}

1

2

3

4

1 2 3 4

CS486/686 Lecture Slides (c) 2017 P. Poupart

59

Example: 4 Queens

X1

{1,2,3,4}

X2

{ , , ,4}

X3

{ 1, , , }

X4

{ , , 3,}

1

2

3

4

1 2 3 4

CS486/686 Lecture Slides (c) 2017 P. Poupart

60

Summary

• What you should know
– How to formalize problems as CSPs
– Backtracking search
– Heuristics

• Variable ordering
• Value ordering

– Forward checking

