Sum-Product Networks

CS486 / 686
University of Waterloo
Lecture 23: July 19, 2017

Outline

- SPNs in more depth
- Relationship to Bayesian networks
- Parameter estimation
- Online and distributed estimation
- Dynamic SPNs for sequence data

SPN \rightarrow Bayes Net

1. Normalize SPN
2. Create structure
3. Construct conditional distribution

Normal SPN

An SPN is said to be normal when

1. It is complete and decomposable
2. All weights are non-negative and the weights of the edges emanating from each sum node sum to 1.
3. Every terminal node in the SPN is a univariate distribution and the size of the scope of each sum node is at least 2 .

Construct Bipartite Bayes Net

1. Create observable node for each observable variable
2. Create hidden node for each sum node
3. For each variable in the scope of a sum node, add a directed edge from the hidden node associated with the sum node to the observable node associated with the variable

Construct Conditional Distributions

1. Hidden node $H: \operatorname{Pr}\left(H=h_{i}\right)=w_{i}$
2. Observable node X : construct conditional distribution in the form of an algebraic decision diagram
a. Extract sub-SPN of all nodes that contain X in their scope
b. Remove the product nodes
c. Replace each sum node by its corresponding hidden variable

Some Observations

- Deep SPNs can be converted into shallow BNs.
- The depth of an SPN is proportional to the height of the highest algebraic decision diagram in the corresponding BN.

Conversion Facts

Thm 1: Any complete and decomposable SPN S over variables X_{1}, \ldots, X_{n} can be converted into a BN B with ADD representation in time $O(N|S|)$. Furthermore S and B represent the same distribution and $|B|=O(N|S|)$.

Thm 2: Given any BN B with ADD representation generated from a complete and decomposable SPN S over variables X_{1}, \ldots, X_{n}, the original SPN S can be recovered by applying the variable elimination algorithm B in $O(N|S|)$.

Relationships

Probabilistic distributions

- Compact: space is polynomial in \# of variables
- Tractable: inference time is polynomial in \# of variables

Compact SPN = Tractable SPN = Tractable BN

Parameter Estimation

- Maximum Likelihood Estimation
- Online Bayesian Moment Matching

Maximum Log-Likelihood

- Objective: $w^{*}=\operatorname{argmax}_{w \in R_{+}} \log \operatorname{Pr}($ data $\mid w)$

$$
=\operatorname{argmax}_{w \in R_{+}} \sum_{x} \log \operatorname{Pr}(x \mid w)
$$

Where $\operatorname{Pr}(x \mid w)=\frac{f(e(x) \mid w)}{f(\mathbf{1} \mid w)}$ and $f(e(x) \mid w)=\sum_{\text {tree } \in e(x)} \Pi_{i j \in \text { tree }} w_{i j}$

Non-Convex Optimization

- Approximations:
- Projected gradient descent (PGD)
- Exponential gradient (EG)
- Sequential monomial approximation (SMA)
- Convex concave procedure (CCCP = EM)

Summary

Algo	Var	Approximation
PGD	additive	linear
	$w_{i j}^{k+1} \leftarrow \operatorname{projection}\left(w_{i j}^{k}+\gamma\left[\frac{\partial \log f(e(x) \mid w)}{\partial w_{i j}}-\frac{\partial \log f(\mathbf{1} \mid w)}{\partial w_{i j}}\right]\right)$	
EG	multiplicative	linear
	$w_{i j}^{k+1} \leftarrow w_{i j}^{k} \exp \left(\gamma\left[\frac{\partial \log f(e(x) \mid w)}{\partial w_{i j}}-\frac{\partial \log f(\mathbf{1} \mid w)}{\partial w_{i j}}\right]\right)$	
SMA	$\log w$ multiplicative	monomial
	$w_{i j}^{k+1} \leftarrow w_{i j}^{k} \exp \left(\gamma\left[\frac{\partial \log f(e(x) \mid w)}{\partial \log w_{i j}}-\frac{\partial \log f(\mathbf{1} \mid w)}{\partial \log w_{i j}}\right]\right)$	
$\begin{gathered} \text { CCCP } \\ \text { (EM) } \end{gathered}$	$\log w$ multiplicative	Concave lower bound
	$w_{i j}^{k+1} \propto w_{i j}^{k} \frac{f_{v_{j}}\left(x \mid w^{k}\right)}{f\left(x \mid w^{k}\right)} \frac{\partial f\left(x \mid w^{k}\right)}{\partial f_{v_{i}}\left(x \mid w^{k}\right)}$	

Results

Scalability

- Online: process data sequentially once only
- Distributed: process subsets of data on different computers
- Mini-batches: online PGD, online EG, online SMA, online EM
- Problems: loss of information due to minibatches, local optima, overfitting
- Can we do better?

Thomas Bayes

Bayesian Learning

- Bayes' theorem (1764)

$$
\operatorname{Pr}\left(\theta \mid X_{1: n}\right) \propto \operatorname{Pr}(\theta) \operatorname{Pr}\left(X_{1} \mid \theta\right) \operatorname{Pr}\left(X_{2} \mid \theta\right) \ldots \operatorname{Pr}\left(X_{n} \mid \theta\right)
$$

- Broderick et al. (2013): facilitates
- Online learning (streaming data)

$$
\operatorname{Pr}\left(\theta \mid X_{1: n}\right) \propto \operatorname{Pr}(\theta) \operatorname{Pr}\left(X_{1} \mid \theta\right) \operatorname{Pr}\left(X_{2} \mid \theta\right) \ldots \operatorname{Pr}\left(X_{n} \mid \theta\right)
$$

- Distributed computation

$$
\underbrace{\operatorname{Pr}(\theta) \operatorname{Pr}\left(X_{1} \mid \theta\right)}_{\text {core \#1 }} \underbrace{\operatorname{Pr}\left(X_{2} \mid \theta\right) \operatorname{Pr}\left(X_{3} \mid \theta\right)}_{\text {core \#2 }} \underbrace{\operatorname{Pr}\left(X_{4} \mid \theta\right) \operatorname{Pr}\left(X_{5} \mid \theta\right)}_{\text {core \#3 }}
$$

Exact Bayesian Learning

- Assume a normal SPN where the weights w_{i}. of each sum node i form a discrete distribution.
- Prior: $\operatorname{Pr}(w)=\prod_{i .} . \operatorname{Dir}\left(w_{i} . \mid \alpha_{i}.\right)$
where $\operatorname{Dir}\left(w_{i} \mid \alpha_{i}.\right) \propto \Pi_{j}\left(w_{i j}\right)^{\alpha_{i j}}$
- Likelihood: $\operatorname{Pr}(x \mid w)=f(e(x) \mid w)=$ $\sum_{\text {tree } \in e(x)} \Pi_{i j \in \text { tree }} w_{i j}$
- Posterior:

Karl Pearson

Method of Moments (1894)

- Estimate model parameters by matching a subset of moments (i.e., mean and variance)
- Performance guarantees
- Break through: First provably consistent estimation algorithm for several mixture models
- HMMs: Hsu, Kakade, Zhang (2008)
- MoGs: Moitra, Valiant (2010), Belkin, Sinha (2010)
- LDA: Anandkumar, Foster, Hsu, Kakade, Liu (2012)

Bayesian Moment Matching for Sum Product Networks

Approximate mixture of products of Dirichlets by a single product of Dirichlets
that matches first and second order moments

Moments

- Moment definition: $M_{P}\left(w_{i j}^{k}\right)=\int_{w} w_{i j}^{k} P(w) d w$
- Dirichlet: $\operatorname{Dir}\left(w_{i} . \mid \alpha_{i .}\right) \propto \prod_{i j}\left(w_{i j}\right)^{\alpha_{i j}}$
- Moments: $M_{D i r}\left(w_{i j}\right)=\frac{\alpha_{i j}}{\sum_{j} \alpha_{i j}}$

$$
M_{D i r}\left(w_{i j}^{2}\right)=\left(\frac{\alpha_{i j}}{\sum_{j} \alpha_{i j}}\right)\left(\frac{\alpha_{i j}+1}{\sum_{j} \alpha_{i j}+1}\right)
$$

- Hyperparameters: $\alpha_{i j}=$

$$
M_{\operatorname{Dir}}\left(w_{i j}\right) \frac{M_{\operatorname{Dir}}\left(w_{i j_{1}}\right)-M_{\operatorname{Dir}}\left(w_{i j}^{2}\right)}{M_{\operatorname{Dir}}\left(w_{i i_{1}}^{2}\right)-\left(M_{\operatorname{Dir}}\left(w_{i j}\right)\right)^{2}}
$$

Moment Matching

Recursive moment computation

- Compute $M_{P}\left(w_{i j}^{k}\right)$ of posterior $P(w \mid x)$ after observing x
$M_{P}\left(w_{i j}^{k}\right) \leftarrow$ computeMoment (node)
If isLeaf (node) then
Return leaf value
Else if isProduct(node) then
Return $\prod_{\text {child }}$ computeMoment(child)
Else if isSum(node) and node $==i$ then
Return $\sum_{\text {child }} M_{\text {Dir }}\left(w_{i j}^{k} w_{i, c h i l d}\right)$ computeMoment(child)
Else
Return $\sum_{\text {child }} w_{\text {node, child }}$ computeMoment(child)

Results (benchmarks)

Dataset	Var\#	LearnSPN	oBMM	SGD	oEM	oEG
NLTCS	16	-6.11	$\mathbf{- 6 . 0 7}$	$\downarrow-8.76$	$\downarrow-6.31$	$\downarrow-6.85$
MSNBC	17	-6.11	$\mathbf{- 6 . 0 3}$	$\downarrow-6.81$	$\downarrow-6.64$	$\downarrow-6.74$
KDD	64	-2.18	$\mathbf{- 2 . 1 4}$	$\downarrow-44.53$	$\downarrow-2.20$	$\downarrow-2.34$
PLANTS	69	-12.98	$\mathbf{- 1 5 . 1 4}$	$\downarrow-21.50$	$\downarrow-17.68$	$\downarrow-33.47$
AUDIO	100	-40.50	$\mathbf{- 4 0 . 7}$	$\downarrow-49.35$	$\downarrow-42.55$	$\downarrow-46.31$
JESTER	100	-53.48	$\mathbf{- 5 3 . 8 6}$	$\downarrow-63.89$	$\downarrow-54.26$	$\downarrow-59.48$
NETFLIX	100	-57.33	$\mathbf{- 5 7 . 9 9}$	$\downarrow-64.27$	$\downarrow-59.35$	$\downarrow-64.48$
ACCIDENTS	111	-30.04	$\mathbf{- 4 2 . 6 6}$	$\downarrow-53.69$	-43.54	$\downarrow-45.59$
RETAIL	135	-11.04	$\mathbf{- 1 1 . 4 2}$	$\downarrow-97.11$	$\downarrow-11.42$	$\downarrow-14.94$
PUMSB-STAR	163	-24.78	$\mathbf{- 4 5 . 2 7}$	$\downarrow-128.48$	$\downarrow-46.54$	$\downarrow-51.84$
DNA	180	-82.52	$\mathbf{- 9 9 . 6 1}$	$\downarrow-100.70$	$\downarrow-100.10$	$\downarrow-105.25$
KOSAREK	190	-10.99	$\mathbf{- 1 1 . 2 2}$	$\downarrow-34.64$	$\downarrow-11.87$	$\downarrow-17.71$
MSWEB	294	-10.25	$\mathbf{- 1 1 . 3 3}$	$\downarrow-59.63$	$\downarrow-11.36$	$\downarrow-20.69$
BOOK	500	-35.89	$\mathbf{- 3 5 . 5 5}$	$\downarrow-249.28$	$\downarrow-36.13$	$\downarrow-42.95$
MOVIE	500	-52.49	$\mathbf{- 5 9 . 5 0}$	$\downarrow-227.05$	$\downarrow-64.76$	$\downarrow-84.82$
WEBKB	839	-158.20	$\mathbf{- 1 6 5 . 5 7}$	$\downarrow-338.01$	$\downarrow-169.64$	$\downarrow-179.34$
REUTERS	889	-85.07	$\mathbf{- 1 0 8 . 0 1}$	$\downarrow-407.96$	-108.10	$\downarrow-108.42$
NEWSGROUP	910	-155.93	$\mathbf{- 1 5 8 . 0 1}$	$\downarrow-312.12$	$\downarrow-160.41$	$\downarrow-167.89$
BBC	1058	-250.69	-275.43	$\downarrow-462.96$	$\mathbf{- 2 7 4 . 8 2}$	$\downarrow-276.97$
AD	1556	-19.73	$\mathbf{- 6 3 . 8 1}$	$\downarrow-638.43$	$\downarrow-63.83$	$\downarrow-64.11$

Results (Large Datasets)

- Log likelihood

Dataset	Var\#	LearnSPN	oBMM	oDMM	SGD	oEM	oEG
KOS	6906	-444.55	$\mathbf{- 4 2 2 . 1 9}$	-437.30	-3581.72	-452.02	-452.02
NIPS	12419	-	-1691.87	-1709.04	-6254.22	$\mathbf{- 1 4 9 5 . 6 3}$	-3142.09
ENRON	28102	-	$\mathbf{- 5 1 8 . 8 4 2}$	-522.45	-	-	-
NYTIMES	102660	-	$\mathbf{- 1 5 0 3 . 6 5}$	-1559.39	-	-	-

- Time (minutes)

Dataset	Var\#	LearnSPN	oBMM	oDMM	SGD	oEM	oEG
KOS	6906	1439.11	89.40	$\mathbf{8 . 6 6}$	162.98	59.49	155.34
NIPS	12419	-	139.50	$\mathbf{9 . 4 3}$	180.25	64.62	178.35
ENRON	28102	-	2018.05	$\mathbf{5 8 0 . 6 3}$	-	-	-
NYTIMES	102660	-	12091.7	$\mathbf{1 6 4 3 . 6 0}$	-	-	-

Sequence Data

- How can we train an SPN with data sequences of varying length?
- Examples
- Sentence modeling: sequence of words
- Activity recognition: sequence of measurements
- Weather prediction: time-series data
- Challenge: need structure that adapts to the length of the sequence while keeping \# of parameters fixed

Dynamic SPN

- Idea: stack template networks with identical structure and parameters

Definitions

- Dynamic Sum-Product Network: bottom network, a stack of template networks and a top network
- Bottom network: directed acyclic graph with $2 n$ indicator leaves and k roots that interface with the network above.
- Top network: rooted directed acyclic graph with k leaves that interface with the network below
- Template network: directed acyclic graph of k roots that interface with the network above, $2 n$ indicator leaves and k additional leaves that interface with the network below.

Invariance

Let f be a bijective mapping that associates inputs to corresponding outputs in a template network

Invariance: a template network over X_{1}, \ldots, X_{n} is invariant when the scope of each interface node excludes X_{1}, \ldots, X_{n} and for all pairs of interface nodes i and j, the following properties hold:

- $\operatorname{scope}(i)=\operatorname{scope}(j)$ or $\operatorname{scope}(i) \cap \operatorname{scope}(j)=\emptyset$
- $\operatorname{scope}(i)=\operatorname{scope}(j) \Leftrightarrow \operatorname{scope}(f(i))=\operatorname{scope}(f(j))$
- $\operatorname{scope}(i) \cap \operatorname{scope}(j)=\emptyset \Leftrightarrow \operatorname{scope}(f(i)) \cap \operatorname{scope}(f(j))=\varnothing$
- All interior and output sum nodes are complete
- All interior and output product nodes are decomposable

Completeness and Decomposability

Theorem 1: If
a. the bottom network is complete and decomposable,
b. the scopes of all pairs of output interface nodes of the bottom network are either identical or disjoint,
c. the scopes of the output interface nodes of the bottom network can be used to assign scopes to the input interface nodes of the template and top networks in such a way that the template network is invariant and the top network is complete and decomposable, then the DSPN is complete and decomposable

Structure Learning

Anytime search-and-score framework

Input: data, variables X_{1}, \ldots, X_{n}
Output: templateNet

$$
\begin{aligned}
& \text { templateNet } \leftarrow \text { initialStructure }\left(\text { data }, X_{1}, \ldots, X_{n}\right) \\
& \text { Repeat } \\
& \quad \text { templateNet } \leftarrow \text { neighbour }(\text { templateNet, data }) \\
& \text { Until stopping criterion is met }
\end{aligned}
$$

Initial Structure

- Factorized model of univariate distributions

Neighbour generation

- Replace sub-SPN rooted at a product node by a product of Naïve Bayes modes

Results

Table 1: Statistics of the datasets used in our experiments.

Dataset	\# Instances	Sequence length	\# of Obs. variables
HMM-Samples	100	100	1
Water	100	100	4
BAT	100	100	10
Pen-Based Digits	10992	16	7
EEG Eye State	14980	15	1
Spoken Arabic Digit	8800	40	13
Hill-Valley	606	100	1
Japanese Vowels	640	16	12

Table 2: Mean log-likelihood and standard error for the synthetic datasets.

Dataset	True Model LL	LearnSPN LL	DSPN LL
HMM-Samples	-62.2015 ± 0.8449	-65.3996 ± 0.7081	$\mathbf{- 6 2 . 5 9 8 2} \pm 0.7362$
Water	-249.5736 ± 1.0241	-270.3871 ± 0.9422	$\mathbf{- 2 5 2 . 3 6 0 7} \pm 0.8958$
BAT	-628.1721 ± 1.9802	-684.3833 ± 1.3088	$\mathbf{- 6 4 1 . 5 9 7 4} \pm 1.1176$

Resuits

Dataset	HMM Training	Reveal Training	DSPN Training
Pen-Based Digits	-74.3763 ± 0.1493	-74.1533 ± 0.2643	$\mathbf{- 6 3 . 2 3 7 6} \pm 0.6727$
EEG Eye State	-8.1381 ± 0.1265	-7.8332 ± 0.0134	$\mathbf{- 7 . 5 2 1 6} \pm 0.1774$
Spoken Arabic Digit	-323.4032 ± 0.4752	-256.6012 ± 0.2028	$\mathbf{- \mathbf { 2 5 2 . 2 1 7 7 }} \pm 0.3404$
Hill-Valley	-69.7490 ± 0.2071	-67.7216 ± 0.0135	$\mathbf{- 6 3 . 2 7 2 2} \pm 0.1614$
Japanese Vowels	-94.8432 ± 0.3931	-69.7882 ± 0.1023	$\mathbf{- 6 6 . 3 3 0 5} \pm 0.2942$

Dataset	HMM Testing	Reveal Testing	DSPN Testing
Pen-Based Digits	-74.1607 ± 0.1208	-74.3826 ± 0.2425	$\mathbf{- 6 3 . 4 5 9 7} \pm 0.2794$
EEG Eye State	-8.4959 ± 0.2579	-7.8433 ± 0.0252	$\mathbf{- 7 . 2 5 0 8} \pm 0.1031$
Spoken Arabic Digit	-327.4504 ± 0.4342	-260.2027 ± 0.9617	$\mathbf{- 2 5 7 . 8 6 1 2} \pm 0.5031$
Hill-Valley	-69.7613 ± 0.1755	-67.7253 ± 0.0741	$\mathbf{- 6 3 . 3 6 9 8} \pm 0.3068$
Japanese Vowels	-94.2505 ± 0.2981	-71.3435 ± 1.2324	$\mathbf{- 6 8 . 7 5 2 9} \pm 0.2688$

Conclusion

- Sum-Product Networks
- Deep architecture with clear semantics
- Tractable probabilistic graphical model
- Future work
- Decision SPNs: M. Melibari and P. Doshi
- Open problem:
- Thorough comparison of SPNs to other deep networks

