Sum-Product Networks

CS486 / 686

University of Waterloo

Lecture 23: July 19, 2017

Outline

- SPNs in more depth
 - Relationship to Bayesian networks
 - Parameter estimation
 - Online and distributed estimation
 - Dynamic SPNs for sequence data

SPN → Bayes Net

- 1. Normalize SPN
- 2. Create structure
- 3. Construct conditional distribution

Normal SPN

An SPN is said to be normal when

- 1. It is complete and decomposable
- 2. All weights are non-negative and the weights of the edges emanating from each sum node sum to 1.
- 3. Every terminal node in the SPN is a univariate distribution and the size of the scope of each sum node is at least 2.

Construct Bipartite Bayes Net

- Create observable node for each observable variable
- 2. Create hidden node for each sum node
- 3. For each variable in the scope of a sum node, add a directed edge from the hidden node associated with the sum node to the observable node associated with the variable

Construct Conditional Distributions

- 1. Hidden node H: $Pr(H = h_i) = w_i$
- 2. Observable node *X*: construct conditional distribution in the form of an algebraic decision diagram
 - a. Extract sub-SPN of all nodes that contain *X* in their scope
 - b. Remove the product nodes
 - Replace each sum node by its corresponding hidden variable

Some Observations

- Deep SPNs can be converted into shallow BNs.
- The depth of an SPN is proportional to the height of the highest algebraic decision diagram in the corresponding BN.

Conversion Facts

Thm 1: Any complete and decomposable SPN S over variables $X_1, ..., X_n$ can be converted into a BN B with ADD representation in time O(N|S|). Furthermore S and B represent the same distribution and |B| = O(N|S|).

Thm 2: Given any BN B with ADD representation generated from a complete and decomposable SPN S over variables $X_1, ..., X_n$, the original SPN S can be recovered by applying the variable elimination algorithm B in O(N|S|).

Relationships

Probabilistic distributions

- Compact: space is polynomial in # of variables
- Tractable: inference time is polynomial in # of variables

Compact SPN = Tractable SPN = Tractable BN

Parameter Estimation

- Maximum Likelihood Estimation
- Online Bayesian Moment Matching

Maximum Log-Likelihood

• Objective: $w^* = argmax_{w \in R_+} \log \Pr(data|w)$ = $argmax_{w \in R_+} \sum_{x} \log \Pr(x|w)$

Where
$$\Pr(x|w) = \frac{f(e(x)|w)}{f(\mathbf{1}|w)}$$

and $f(e(x)|w) = \sum_{tree \in e(x)} \prod_{ij \in tree} w_{ij}$

Non-Convex Optimization

$$\max_{w} \sum_{x} \log \sum_{tree \in e(x)} \prod_{ij \in tree} w_{ij} - \log \sum_{tree \in 1} \prod_{ij \in tree} w_{ij}$$
 s.t. $w_{ij} \geq 0 \quad \forall ij$

Approximations:

- Projected gradient descent (PGD)
- Exponential gradient (EG)
- Sequential monomial approximation (SMA)
- Convex concave procedure (CCCP = EM)

Summary

Algo	Var	Update	Approximation		
	W	additive	linear		
PGD	$w_{ij}^{k+1} \leftarrow projection \left(w_{ij}^k + \right.$	$\gamma \left[\frac{\partial \log f(e(x) w)}{\partial w_{ij}} - \right]$	$-\frac{\partial \log f(1 w)}{\partial w_{ij}}\bigg]\bigg)$		
	W	multiplicative	linear		
EG	$w_{ij}^{k+1} \leftarrow w_{ij}^{k} \exp\left(\gamma \left[\frac{\partial}{\partial x_{ij}}\right]\right)$	$\frac{\log f(e(x) w)}{\partial w_{ij}} - \frac{\partial \log f(e(x) w)}{\partial w_{ij}}$	$\frac{\operatorname{g} f(1 w)}{\partial w_{ij}} \bigg] \bigg)$		
	log w	multiplicative	monomial		
SMA	$w_{ij}^{k+1} \leftarrow w_{ij}^k \exp\left(\gamma \left[\frac{\partial \gamma}{\partial x_{ij}}\right]\right)$	$\frac{\log f(e(x) w)}{\partial \log w_{ij}} - \frac{\partial \log w_{ij}}{\partial x_{ij}}$	$\left[\frac{g f(1 w)}{\log w_{ij}}\right]$		
CCCP	log w	multiplicative	Concave lower bound		
(EM)	$w_{ij}^{k+1} \propto w_{ij}^{k} \frac{f_{v_j}(x w^k)}{f(x w^k)} \frac{\partial f(x w^k)}{\partial f_{v_i}(x w^k)}$				

Results

Scalability

- Online: process data sequentially once only
- Distributed: process subsets of data on different computers
- Mini-batches: online PGD, online EG, online SMA, online EM
- Problems: loss of information due to minibatches, local optima, overfitting
- Can we do better?

Thomas Bayes

Bayesian Learning

Bayes' theorem (1764)

$$\Pr(\theta|X_{1:n}) \propto \Pr(\theta) \Pr(X_1|\theta) \Pr(X_2|\theta) \dots \Pr(X_n|\theta)$$

- Broderick et al. (2013): facilitates
 - Online learning (streaming data)

$$\Pr(\theta|X_{1:n}) \propto \Pr(\theta)\Pr(X_1|\theta)\Pr(X_2|\theta)...\Pr(X_n|\theta)$$

Distributed computation

$$\Pr(\theta) \Pr(X_1|\theta) \Pr(X_2|\theta) \Pr(X_3|\theta) \Pr(X_4|\theta) \Pr(X_5|\theta)$$

$$\text{core } \#1 \qquad \text{core } \#2 \qquad \text{core } \#3$$

Exact Bayesian Learning

- Assume a normal SPN where the weights w_i of each sum node i form a discrete distribution.
- Prior: $\Pr(w) = \prod_{i.} Dir(w_{i.} | \alpha_{i.})$ where $Dir(w_{i.} | \alpha_{i.}) \propto \prod_{j} (w_{ij})^{\alpha_{ij}}$
- Likelihood: $\Pr(x|w) = f(e(x)|w) = \sum_{tree \in e(x)} \prod_{ij \in tree} w_{ij}$
- Posterior:

Karl Pearson

Method of Moments (1894)

- Estimate model parameters by matching a subset of moments (i.e., mean and variance)
- Performance guarantees
 - Break through: First provably consistent estimation algorithm for several mixture models
 - HMMs: Hsu, Kakade, Zhang (2008)
 - MoGs: Moitra, Valiant (2010), Belkin, Sinha (2010)
 - LDA: Anandkumar, Foster, Hsu, Kakade, Liu (2012)

Bayesian Moment Matching for Sum Product Networks

Bayesian Learning
+
Method of Moments

Online, distributed and tractable algorithm for SPNs

Approximate mixture of products of Dirichlets
by a single product of Dirichlets
that matches first and second order moments

Moments

- Moment definition: $M_P(w_{ij}^k) = \int_W w_{ij}^k P(w) dw$
- Dirichlet: $Dir(w_i | \alpha_i) \propto \prod_{ij} (w_{ij})^{\alpha_{ij}}$
 - Moments: $M_{Dir}(w_{ij}) = \frac{\alpha_{ij}}{\sum_{j} \alpha_{ij}}$

$$M_{Dir}(w_{ij}^2) = \left(\frac{\alpha_{ij}}{\sum_j \alpha_{ij}}\right) \left(\frac{\alpha_{ij}+1}{\sum_j \alpha_{ij}+1}\right)$$

- Hyperparameters: α_{ij} =

$$M_{Dir}(w_{ij}) \frac{M_{Dir}(w_{ij_1}) - M_{Dir}(w_{ij}^2)}{M_{Dir}(w_{ij_1}^2) - (M_{Dir}(w_{ij}))^2}$$

Moment Matching

Recursive moment computation

• Compute $M_P(w_{ij}^k)$ of posterior P(w|x) after observing x

```
M_P(w_{ij}^k) \leftarrow computeMoment(node)
   If isLeaf (node) then
       Return leaf value
   Else if isProduct(node) then
       Return \prod_{child} computeMoment(child)
   Else if isSum(node) and node == i then
      Return \sum_{child} M_{Dir}(w_{ij}^k w_{i,child}) compute Moment(child)
   Else
       Return \sum_{child} w_{node,child} compute Moment(child)
```

Results (benchmarks)

Dataset	Var#	LearnSPN	oBMM	SGD	oEM	oEG
NLTCS	16	-6.11	-6.07	↓-8.76	↓-6.31	↓-6.85
MSNBC	17	-6.11	-6.03	↓-6.81	↓-6.64	↓-6.74
KDD	64	-2.18	-2.14	↓-44.53	↓ -2.20	↓-2.34
PLANTS	69	-12.98	-15.14	↓-21.50	↓-17.68	↓-33.47
AUDIO	100	-40.50	-40.7	↓-49.35	↓-42.55	↓-46.31
JESTER	100	-53.48	-53.86	↓-63.89	↓-54.26	↓-59.48
NETFLIX	100	-57.33	-57.99	↓-64.27	↓-59.35	↓-64.48
ACCIDENTS	111	-30.04	-42.66	↓-53. 6 9	-43.54	\downarrow -45.59
RETAIL	135	-11.04	-11.42	↓-97.11	↓-11.42	↓-14.94
PUMSB-STAR	163	-24.78	-45.27	↓-128.48	↓-46.54	↓-51.84
DNA	180	-82.52	-99.61	↓-100.70	↓-100.10	↓-105.25
KOSAREK	190	-10.99	-11.22	↓-34.64	↓-11.87	↓-17.71
MSWEB	294	-10.25	-11.33	↓-59.63	↓-11.36	↓-20.69
BOOK	500	-35.89	-35.55	↓-249.28	↓-36.13	↓-42.95
MOVIE	500	-52.49	-59.50	↓-227.05	↓-64.76	↓-84.82
WEBKB	839	-158.20	-165.57	↓-338.01	↓-169.64	↓-179.34
REUTERS	889	-85.07	-108.01	↓-407.96	-108.10	↓-108.42
NEWSGROUP	910	-155.93	-158.01	↓-312.12	↓-160.41	↓-167.89
BBC	1058	-250.69	-275.43	↓-462.96	-274.82	↓-276.97
AD	1556	-19.73	-63.81	↓-638.43	↓-63.83	↓-64.11

Results (Large Datasets)

Log likelihood

Dataset	Var#	LearnSPN	oBMM	oDMM	SGD	oEM	oEG
KOS	6906	-444.55	-422.19	-437.30	-3581.72	-452.02	-452.02
NIPS	12419	1=1	-1691.87	-1709.04	-6254.22	-1495.63	-3142.09
ENRON	28102	1 2 .0	-518.842	-522.45	12 0.	57A	a 0
NYTIMES	102660	-	-1503.65	-1559.39	= 3		±3

• Time (minutes)

Dataset	Var#	LearnSPN	oBMM	oDMM	SGD	oEM	oEG
KOS	6906	1439.11	89.40	8.66	162.98	59.49	155.34
NIPS	12419	-	139.50	9.43	180.25	64.62	178.35
ENRON	28102	-	2018.05	580.63	1070	5 7 //	1075
NYTIMES	102660	-	12091.7	1643.60	-	-	-

Sequence Data

- How can we train an SPN with data sequences of varying length?
- Examples
 - Sentence modeling: sequence of words
 - Activity recognition: sequence of measurements
 - Weather prediction: time-series data
- Challenge: need structure that adapts to the length of the sequence while keeping # of parameters fixed

Dynamic SPN

Idea: stack template networks with identical structure and parameters

Definitions

- Dynamic Sum-Product Network: bottom network, a stack of template networks and a top network
- **Bottom network:** directed acyclic graph with 2n indicator leaves and k roots that interface with the network above.
- Top network: rooted directed acyclic graph with k leaves that interface with the network below
- **Template network:** directed acyclic graph of k roots that interface with the network above, 2n indicator leaves and k additional leaves that interface with the network below.

Invariance

Let *f* be a bijective mapping that associates inputs to corresponding outputs in a template network

Invariance: a template network over $X_1, ..., X_n$ is invariant when the scope of each interface node excludes $X_1, ..., X_n$ and for all pairs of interface nodes i and j, the following properties hold:

- $scope(i) = scope(j) \text{ or } scope(i) \cap scope(j) = \emptyset$
- $scope(i) = scope(j) \Leftrightarrow scope(f(i)) = scope(f(j))$
- $scope(i) \cap scope(j) = \emptyset \Leftrightarrow scope(f(i)) \cap scope(f(j)) = \emptyset$
- All interior and output sum nodes are complete
- All interior and output product nodes are decomposable

Completeness and Decomposability

Theorem 1: If

- a. the bottom network is complete and decomposable,
- b. the scopes of all pairs of output interface nodes of the bottom network are either identical or disjoint,
- c. the scopes of the output interface nodes of the bottom network can be used to assign scopes to the input interface nodes of the template and top networks in such a way that the template network is invariant and the top network is complete and decomposable,

then the DSPN is complete and decomposable

Structure Learning

Anytime search-and-score framework

Input: data, variables $X_1, ..., X_n$

Output: templateNet

 $templateNet \leftarrow initialStructure(data, X_1, ..., X_n)$

Repeat

 $templateNet \leftarrow neighbour(templateNet, data)$

Until stopping criterion is met

Initial Structure

Factorized model of univariate distributions

Neighbour generation

 Replace sub-SPN rooted at a product node by a product of Naïve Bayes modes

Results

Table 1: Statistics of the datasets used in our experiments.

Dataset	# Instances	Sequence length	# of Obs. variables
HMM-Samples	100	100	1
Water	100	100	4
BAT	100	100	10
Pen-Based Digits	10992	16	7
EEG Eye State	14980	15	1
Spoken Arabic Digit	8800	40	13
Hill-Valley	606	100	1
Japanese Vowels	640	16	12

Table 2: Mean log-likelihood and standard error for the synthetic datasets.

Dataset	True Model LL	LeamSPN LL	DSPN LL
HMM-Samples	-62.2015 ± 0.8449	-65.3996 ± 0.7081	-62.5982 ± 0.7362
Water	-249.5736 ± 1.0241	-270.3871 ± 0.9422	-252.3607 ± 0.8958
BAT	-628.1721 ± 1.9802	-684.3833 ± 1.3088	-641.5974 ± 1.1176

Results

Dataset	HMM Training	Reveal Training	DSPN Training
Pen-Based Digits	-74.3763 ± 0.1493	-74.1533 ± 0.2643	-63.2376 ± 0.6727
EEG Eye State	-8.1381 ± 0.1265	-7.8332 ± 0.0134	-7.5216 ± 0.1774
Spoken Arabic Digit	-323.4032 ± 0.4752	-256.6012 ± 0.2028	-252.2177 ± 0.3404
Hill-Valley	-69.7490 ± 0.2071	-67.7216 ± 0.0135	-63.2722 ± 0.1614
Japanese Vowels	-94.8432 ± 0.3931	-69.7882 ± 0.1023	-66.3305 ± 0.2942

Dataset	HMM Testing	Reveal Testing	DSPN Testing
Pen-Based Digits	-74.1607 ± 0.1208	-74.3826 ± 0.2425	-63.4597 ± 0.2794
EEG Eye State	-8.4959 ± 0.2579	-7.8433 ± 0.0252	-7.2508 ± 0.1031
Spoken Arabic Digit	-327.4504 ± 0.4342	-260.2027 ± 0.9617	-257.8612 ± 0.5031
Hill-Valley	-69.7613 ± 0.1755	-67.7253 ± 0.0741	-63.3698 ± 0.3068
Japanese Vowels	-94.2505 ± 0.2981	-71.3435 ± 1.2324	-68.7529 ± 0.2688

Conclusion

- Sum-Product Networks
 - Deep architecture with clear semantics
 - Tractable probabilistic graphical model
- Future work
 - Decision SPNs: M. Melibari and P. Doshi
- Open problem:
 - Thorough comparison of SPNs to other deep networks