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Outline

• SPNs in more depth
– Relationship to Bayesian networks

– Parameter estimation

– Online and distributed estimation

– Dynamic SPNs for sequence data
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SPN  Bayes Net

1. Normalize SPN

2. Create structure

3. Construct conditional distribution
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Normal SPN

An SPN is said to be normal when

1. It is complete and decomposable

2. All weights are non-negative and the weights of 
the edges emanating from each sum node sum 
to 1.

3. Every terminal node in the SPN is a univariate 
distribution and the size of the scope of each 
sum node is at least 2.
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Construct Bipartite Bayes Net

1. Create observable node for each observable 
variable 

2. Create hidden node for each sum node

3. For each variable in the scope of a sum node, 
add a directed edge from the hidden node 
associated with the sum node to the observable 
node associated with the variable
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Construct Conditional Distributions

1. Hidden node : 

2. Observable node : construct conditional 
distribution in the form of an algebraic decision 
diagram

a. Extract sub-SPN of all nodes that contain in their 
scope

b. Remove the product nodes

c. Replace each sum node by its corresponding hidden 
variable

CS486/686 Lecture Slides (c) 2017 P. Poupart



7

Some Observations

• Deep SPNs can be converted into shallow BNs.  

• The depth of an SPN is proportional to the height 
of the highest algebraic decision diagram in the 
corresponding BN.
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Conversion Facts
Thm 1: Any complete and decomposable SPN 
over variables can be converted into a BN 

with ADD representation in time . 
Furthermore and represent the same 
distribution and . 

Thm 2: Given any BN with ADD representation 
generated from a complete and decomposable 
SPN over variables , the original SPN 
can be recovered by applying the variable 
elimination algorithm in .
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Relationships
Probabilistic distributions
• Compact: space is polynomial in # of variables

• Tractable: inference time is polynomial in # of variables

SPN = BN

Compact BN

Compact SPN = Tractable SPN = Tractable BN
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Parameter Estimation

• Maximum Likelihood Estimation

• Online Bayesian Moment Matching

CS486/686 Lecture Slides (c) 2017 P. Poupart



11

Maximum Log-Likelihood

• Objective: 
శ

శ

Where 

and
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Non-Convex Optimization

s.t.

• Approximations:
– Projected gradient descent (PGD)

– Exponential gradient (EG)

– Sequential monomial approximation (SMA)

– Convex concave procedure (CCCP = EM)
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Summary
Algo Var Update Approximation
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Results

CS486/686 Lecture Slides (c) 2017 P. Poupart



15

Scalability
• Online: process data sequentially once only

• Distributed: process subsets of data on different 
computers

• Mini-batches: online PGD, online EG, online 
SMA, online EM

• Problems: loss of information due to mini-
batches, local optima, overfitting

• Can we do better?
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Thomas Bayes
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Bayesian Learning

• Bayes’ theorem (1764)

• Broderick et al. (2013): facilitates
– Online learning (streaming data)

– Distributed computation

core #1 core #2 core #3
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Exact Bayesian Learning
• Assume a normal SPN where the weights of 

each sum node form a discrete distribution.

• Prior: 

where ೔ೕ

• Likelihood: 

• Posterior:
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Method of Moments (1894)

• Estimate model parameters by matching a 
subset of moments (i.e., mean and 
variance)

• Performance guarantees
– Break through: First provably consistent estimation 

algorithm for several mixture models
• HMMs: Hsu, Kakade, Zhang (2008)

• MoGs: Moitra, Valiant (2010), Belkin, Sinha (2010)

• LDA: Anandkumar, Foster, Hsu, Kakade, Liu (2012)
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Bayesian Moment Matching 
for Sum Product Networks

Bayesian Learning
+

Method of Moments

Online, distributed and 
tractable algorithm for SPNs

Approximate mixture of products of Dirichlets
by a single product of Dirichlets

that matches first and second order moments
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Moments

• Moment definition:

• Dirichlet: ೔ೕ

– Moments: ೔ೕ

೔ೕೕ

೔ೕ
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೔ೕ

೔ೕೕ

– Hyperparameters: 
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Moment Matching
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Recursive moment computation
• Compute of posterior after observing 

If then
Return leaf value

Else if then
Return ௖௛௜௟ௗ

Else if and then
Return ஽௜௥ ௜௝

௞
௜,௖௛௜௟ௗ௖௛௜௟ௗ

Else
Return ௡௢ௗ௘,௖௛௜௟ௗ௖௛௜௟ௗ
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Results (benchmarks)
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Results (Large Datasets)

• Log likelihood

• Time (minutes)
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Sequence Data

• How can we train an SPN with data sequences of varying 
length?

• Examples
– Sentence modeling: sequence of words

– Activity recognition: sequence of measurements

– Weather prediction: time-series data

• Challenge: need structure that adapts to the length of the 
sequence while keeping # of parameters fixed
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Dynamic SPN

• Idea: stack template networks with identical structure and 
parameters +
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Definitions
• Dynamic Sum-Product Network: bottom network, a 

stack of template networks and a top network

• Bottom network: directed acyclic graph with indicator 
leaves and roots that interface with the network above. 

• Top network: rooted directed acyclic graph with leaves 
that interface with the network below 

• Template network: directed acyclic graph of roots that 
interface with the network above, indicator leaves and 

additional leaves that interface with the network below.
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Invariance
Let be a bijective mapping that associates inputs to 
corresponding outputs in a template network 

Invariance: a template network over is invariant 
when the scope of each interface node excludes 
and for all pairs of interface nodes and , the following 
properties hold:

or 

• All interior and output sum nodes are complete

• All interior and output product nodes are decomposable
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Completeness and Decomposability

Theorem 1: If 

a. the bottom network is complete and decomposable,

b. the scopes of all pairs of output interface nodes of the 
bottom network are either identical or disjoint, 

c. the scopes of the output interface nodes of the bottom 
network can be used to assign scopes to the input 
interface nodes of the template and top networks in such 
a way that the template network is invariant and the top 
network is complete and decomposable, 

then the DSPN is complete and decomposable
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Structure Learning
Anytime search-and-score framework

Input: data, variables 

Output: 

Repeat

Until stopping criterion is met
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Initial Structure

• Factorized model of univariate distributions
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Neighbour generation

• Replace sub-SPN rooted at a product node by a 
product of Naïve Bayes modes

CS486/686 Lecture Slides (c) 2017 P. Poupart



35

Results
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Results
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Conclusion
• Sum-Product Networks

– Deep architecture with clear semantics

– Tractable probabilistic graphical model

• Future work
– Decision SPNs: M. Melibari and P. Doshi

• Open problem:
– Thorough comparison of SPNs to other deep networks
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